[1] E. Tal-Gutelmacher, D. Eliezer, Hydrogen-assisted degradation of titanium based alloys, Materials transactions, 45(5) (2004) 1594-1600.
[2] R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A, 213(1-2) (1996) 103-114.
[3] W. Ahmed, M.J. Jackson, Surgical tools and medical devices, Springer, 2016.
[4] G. Yoganjaneyulu, C.S. Narayanan, R. Narayanasamy, Investigation on the fracture behavior of titanium grade 2 sheets by using the single point incremental forming process, Journal of Manufacturing Processes, 35 (2018) 197-204.
[5] W. Dou, Z. Xu, Y. Han, F. Huang, A ductile fracture model incorporating stress state effect, International Journal of Mechanical Sciences, 241 (2023) 107965.
[6] V.V. Skripnyak, E.G. Skripnyak, V.A. Skripnyak, Fracture of titanium alloys at high strain rates and under stress triaxiality, Metals, 10(3) (2020) 305.
[7] M. Scales, N. Tardif, S. Kyriakides, Ductile failure of aluminum alloy tubes under combined torsion and tension, International Journal of Solids and Structures, 97 (2016) 116-128.
[8] C.M.A. Iftikhar, Y.L. Li, C.P. Kohar, K. Inal, A.S. Khan, Evolution of subsequent yield surfaces with plastic deformation along proportional and non-proportional loading paths on annealed AA6061 alloy: Experiments and crystal plasticity finite element modeling, International Journal of Plasticity, 143 (2021) 102956.
[9] M. Zistl, S. Gerke, M. Brünig, Biaxial experiments on the effect of non-proportional loading paths on damage and fracture behavior of ductile metals, Procedia Structural Integrity, 13 (2018) 57-62.
[10] S. Gerke, M. Zistl, A. Bhardwaj, M. Brünig, Experiments with the X0-specimen on the effect of non-proportional loading paths on damage and fracture mechanisms in aluminum alloys, International Journal of Solids and Structures, 163 (2019) 157-169.
[11] X. Liu, S. Yan, K.J. Rasmussen, G.G. Deierlein, Experimental investigation of the effect of Lode angle on fracture initiation of steels, Engineering Fracture Mechanics, 271 (2022) 108637.
[12] J.-M. Seo, H.-T. Kim, Y.-J. Kim, H. Yamada, T. Kumagai, H. Tokunaga, N. Miura, Effect of strain rate and stress triaxiality on fracture strain of 304 stainless steels for canister impact simulation, Nuclear Engineering and Technology, 54(7) (2022) 2386-2394.
[13] M. Chouksey, S.M. Keralavarma, Ductile failure under non-proportional loading, Journal of the Mechanics and Physics of Solids, 164 (2022) 104882.
[14] B. Wang, X. Xiao, V.P. Astakhov, Z. Liu, The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V, Engineering Fracture Mechanics, 219 (2019) 106627.
[15] P. Abedinimanesh, F. Hazinia, M. Ganjiani, Numerically and Experimentally Investigation of the Effect of Anisotropy and Stress Triaxiality on the Fracture Strain, Sharif Journal of Mechanical Engineering, 39(1) (2023) 27-34.
[16] E.E. Cabezas, D.J. Celentano, Experimental and numerical analysis of the tensile test using sheet specimens, Finite Elements in Analysis and Design, 40(5-6 (2004) 555-575.
[17] H. Li, M. Fu, J. Lu, H. Yang, Ductile fracture: Experiments and computations, International journal of plasticity, 27(2) (2011) 147-180.
[18] M. Ganjiani, A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle, European Journal of Mechanics-A/Solids, 84 (2020) 104048.
[19] F. Šebek, J. Petruška, P. Kubík, Lode dependent plasticity coupled with nonlinear damage accumulation for ductile fracture of aluminium alloy, Materials & Design, 137 (2018) 90-107.
[20] Y. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya, J.W. Yoon, Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals, International Journal of Solids and Structures, 112 (2017) 169-184.
[21] I. Astm, ASTM E8/E8M-16a: standard test methods for tension testing of metallic materials, West Conshohocken, PA, USA: ASTM International, (2016).
[22] S. Gatea, B. Lu, J. Chen, H. Ou, G. McCartney, Investigation of the effect of forming parameters in incremental sheet forming using a micromechanics based damage model, International Journal of Material Forming, 12 (2019) 553-574.
[23] J. Cao, F. Li, W. Ma, D. Li, K. Wang, J. Ren, H. Nie, W. Dang, Constitutive equation for describing true stress–strain curves over a large range of strains, Philosophical Magazine Letters, 100(10) (2020) 476-485.
[24] W. Jiang, Y. Li, J. Su, Modified GTN model for a broad range of stress states and application to ductile fracture, European Journal of Mechanics-A/Solids, 57 (2016) 132-148.
[25] L. Malcher, F.A. Pires, J.C. De Sá, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality, International Journal of Plasticity, 30 (2012) 81-115.
[26] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, International journal of fracture, 161(1) (2010) 1-20.