[1] D. Stewart, A platform with six degrees of freedom, Proceedings of the institution of mechanical engineers, 180(1) (1965) 371-386.
[2] M. Almonacid, R.J. Saltaren, R. Aracil, O. Reinoso, Motion planning of a climbing parallel robot, IEEE transactions on robotics and automation, 19(3) (2003) 485-489.
[3] D. Galván-Pozos, F. Ocampo-Torres, Dynamic analysis of a six-degree of freedom wave energy converter based on the concept of the Stewart-Gough platform, Renewable Energy, 146 (2020) 1051-1061.
[4] S. Jalili, F. Torabi, Study on Fatigue Life of Engine-Exhaust Pipe Flexible Couplings, in: The Biennial International Conference on Experimental Solid Mechanics (X-Mech-2020), Tehran, Civilica, Tehran, Iran, 2020.
[5] A.A. Markou, S. Elmas, G.H. Filz, Revisiting Stewart–Gough platform applications: A kinematic pavilion, Engineering Structures, 249 (2021) 113304.
[6] H. Tourajizadeh, O. Gholami, Z. Mehrvarz, H. B, Design, Modeling, and Optimal Position Control of a New Wrist Rehabilitation Robot Using the Stewart Platform, Amirkabir J. Mech Eng, 54(12) (2023) 2705-2724.
[7] P.V. Lukianov, V.V. Kabanyachyi, Mathematical model of stable equilibrium operation of the flight simulator based on the Stewart platform, Aviation, 27(2) (2023) 119–128.
[8] M. Hung Vu, N. Pham Van Bach, T. Nguyen Luong, T. Bui Trung, Kinematics design and statics analysis of novel 6-DOF passive vibration isolator with S-shaped legs based on Stewart platform, Journal of Vibroengineering, 26(1) (2023) 66-78.
[9] O. Ma, J. Angeles, Architecture singularities of platform manipulators, in: Proceedings. 1991 IEEE International Conference on Robotics and Automation, IEEE Computer Society, 1991, pp. 1542-1547.
[10] M.L. Husty, An algorithm for solving the direct kinematics of general Stewart-Gough platforms, Mechanism and Machine Theory, 31(4) (1996) 365-379.
[11] P. Dietmaier, The Stewart-Gough platform of general geometry can have 40 real postures, in: Advances in robot kinematics: Analysis and control, Springer, 1998, pp. 7-16.
[12] B. Dasgupta, T. Mruthyunjaya, Closed-form dynamic equations of the general Stewart platform through the Newton–Euler approach, Mechanism and machine theory, 33(7) (1998) 993-1012.
[13] S.-H. Chen, L.-C. Fu, The forward kinematics of the 6-6 Stewart platform using extra sensors, in: 2006 IEEE International Conference on Systems, Man and Cybernetics, IEEE, 2006, pp. 4671-4676.
[14] A. Nag, V. Safar, S. Bandyopadhyay, A uniform geometric-algebraic framework for the forward kinematic analysis of 6-6 Stewart platform manipulators of various architectures and other related 6-6 spatial manipulators, Mechanism and Machine Theory, 155 (2021) 104090.
[15] T. Zhiyong, H. Ma, Z. Pei, L. Liu, J. Zhang, A new numerical method for Stewart platform forward kinematics, in: 35th Chinese Control Conference (CCC), Chengdu, China, 2016, pp. pp. 6311-6316.
[16] S. Jalili, Effect of Irregular Distribution of Joints on Base Platform of Hexapodsʼ Sensory Configuration, in: International Conference of Iranian Society of Mechanical Engineers, Civilica, Tehran, Iran, 2020.
[17] S. Shim, S. Lee, S. Joo, J. Seo, Denavit-Hartenberg notation-based kinematic constraint equations for forward kinematics of the 3–6 Stewart platform, Journal of Mechanisms and Robotics, 14(5) (2022) 054505.
[18] P. Ji, H. Wu, A closed-form forward kinematics solution for the 6-6/sup p/Stewart platform, IEEE Transactions on robotics and automation, 17(4) (2001) 522-526.
[19] K. Harib, K. Srinivasan, Kinematic and dynamic analysis of Stewart platform-based machine tool structures, Robotica, 21(5) (2003) 541-554.
[20] H. Zhu, W. Xu, B. Yu, F. Ding, L. Cheng, J. Huang, A novel hybrid algorithm for the forward kinematics problem of 6 dof based on neural networks, Sensors, 22(14) (2022) 5318.
[21] T. Charters, R. Enguica, P. Freitas, Detecting singularities of Stewart platforms, Mathematics-in-Industry Case Studies Journal, 1 (2009) 66-80.
[22] J. Diebel, Representing attitude: Euler angles, unit quaternions, and rotation vectors, Matrix, 58(15-16) (2006) 1-35.
[23] C. Gosselin, L.-T. Schreiber, Redundancy in Parallel Mechanisms: A Review, Applied Mechanics Reviews, 70(1) (2018).
[24] X. Liang, X. Zeng, G. Li, T. Su, G. He, Kinematic analysis of three redundant parallel mechanisms for fracture reduction surgery, Mechanism and Machine Theory, 188 (2023) 105400.
[25] Z. Wang, J. He, H. Shang, H. Gu, Forward kinematics analysis of a six‐DOF Stewart platform using PCA and NM algorithm, Industrial Robot: An International Journal, 36(5) (2009) 448-460.
[26] F. Yang, X. Tan, Z. Wang, Z. Lu, T. He, A geometric approach for real-time forward kinematics of the general Stewart platform, Sensors, 22(13) (2022) 4829.
[27] S. Jalili, F. Torabi, Sensory Configuration of Stewart Platform-A Numerical Study, in: The Biennial International Conference on Experimental Solid Mechanics, Civilica, Tehran, Iran, 2020.
[28] Q. Zhu, Z. Zhang, An efficient numerical method for forward kinematics of parallel robots, IEEE Access, 7 (2019) 128758-128766.
[29] S. Karmakar, C.J. Turner, Forward kinematics solution for a general Stewart platform through iteration based simulation, The International Journal of Advanced Manufacturing Technology, 126(1) (2023) 813-825.
[30] Y. Zhang, H.-s.-a.-q.-e. Han, Z.-b. Xu, C.-y. Han, Y. Yu, A.-l. Mao, Q.-w. Wu, Kinematics analysis and performance testing of 6-RR-RP-RR parallel platform with offset RR-hinges based on Denavit-Hartenberg parameter method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(18) (2021) 3519-3533.
[31] G. Zhu, S. Wei, D. Li, Y. Wang, Q. Liao, Conformal Geometric Algebra–Based Geometric Modeling Method for Forward Displacement Analysis of 6-4 Stewart Platforms, Journal of Mechanisms and Robotics, 16(7) (2024).