کنترل هماهنگ چند عامل برای انجام فرود خودکار و اجرای مانورهای هماهنگ با استفاده از رویکرد تخصیص کنترل فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در بسیاری از پیمایه‌های نسل جدید، استفاده از رویکرد تخصیص کنترل، یکی از روش‌های موثر برای انجام مانورهای هماهنگ هوایی به منظور کاهش انرژِی مورد نیاز جهت انجام عملیات مختلف، جبران‌سازی عیوب عملگرهای سیستم، افزایش قابلیت اطمینان، افزایش قابلیت اعتماد و جلوگیری از به اشباع رسیدن عملگرها است. این مقاله، به کنترل هماهنگ چند عامل برای فرود خودکار و انجام مانورهای هماهنگ با استفاده از رویکرد تخصیص کنترل فازی می‌پردازد. برای انجام پرواز هماهنگ، نقش پیشرو  برعهده یکی از پیمایه‌ها است که به عنوان عامل پیشرو شناخته می‌شود، در حالی که دو پیمایه دیگر، به عنوان عامل‌های پیرو عمل می‌کنند. با استفاده از کنترل‌کننده‌ فازی، بهینه‌سازی پارامترهای آن با استفاده از الگوریتم ژنتیک و تخصیص سیگنال‌های کنترلی بین عملگرهای بالابر و سیستم کنترل بردار نیروی پیشران، می‌توان عامل‌ها را با پایداری مطلوب، دقت کافی و حداقل تلاش کنترلی به ارتفاعی مشخص هدایت نمود و سپس مانورهای هماهنگ و منظمی را به انجام رسانید. نتایج نشان می‌دهد که روش تخصیص کنترل فازی، دقت بالایی را در کنترل فرود  پیمایه به یک ارتفاع مشخص دارا بوده و در نهایت، پیمایه‌ها با شرایط مناسب، پایداری کافی، دقت بالا ، زمان نسبتاً کوتاه و کمترین میزان تلاش کنترلی به اجرای مانور فرود خودکار هماهنگ می‌پردازند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Coordinated Control of Multiple Agents for Automatic Landing and Execution of Formation Flights using Fuzzy Control Allocation Approach

نویسندگان [English]

  • Saba Nikseresht
  • Mahdi Jafari Nadoushan
K. N. Toosi University of Technology
چکیده [English]

In many next-generation platforms, the application of control allocation approaches is one of the most effective methods for performing coordinated aerial maneuvers. This approach minimizes the energy required for various operations, compensates for actuator faults, enhances reliability and dependability, and prevents actuator saturation. This paper addresses the coordinated control of multiple agents for autonomous landing and coordinated maneuvers using a fuzzy control allocation approach. In this framework, one of the platforms assumes the role of a leader agent, while the other two operate as follower agents. By employing a fuzzy controller, optimizing its parameters with a genetic algorithm, and allocating control signals among lift actuators and the thrust vector control system, agents can be guided with desired stability, sufficient accuracy, and minimal control effort to a specific altitude, followed by executing well-organized and synchronized maneuvers. The results demonstrate that the fuzzy control allocation method achieves high precision in controlling the landing of platforms to a designated altitude. Ultimately, the platforms execute coordinated autonomous landing maneuvers with favorable conditions, sufficient stability, high accuracy, relatively short execution time, and minimal control effort.

کلیدواژه‌ها [English]

  • Fuzzy Control Allocation
  • Multi-Agent Systems
  • Formation Flights
  • Autonomous Landing
  • Multi-Objective Optimization
  • Genetic Algorithm
[1] S.A. Tohidi, Control of Fault Tolerance using Adaptive Control for Allocation of Virtual Inverse Manipulators along Null Space, K. N. Toosi University of Technology, 1391.
[2] C. Hao, W. Xiangke, S. Lincheng, C. Yirui, Formation flight of fixed-wing UAV swarms: A group-based hierarchical approach, Chinese Journal of Aeronautics, 34(2) (2021) 504-515.
[3] Y. Kartal, K. Subbarao, N.R. Gans, A. Dogan, F. Lewis, Distributed backstepping based control of multiple UAV formation flight subject to time delays, IET Control Theory & Applications, 14(12) (2020) 1628-1638.
[4] J. Wang, Z. Zhou, C. Wang, Z. Ding, Cascade structure predictive observer design for consensus control with applications to UAVs formation flying, Automatica, 121 (2020) 109200.
[5] Z. Yan, L. Han, X. Li, X. Dong, Q. Li, Z. Ren, Event-triggered formation control for time-delayed discrete-time multi-agent system applied to multi-UAV formation flying, Journal of the Franklin Institute, 360(5) (2023) 3677-3699.
[6] M. Kankashvar, H. Bolandi, N. Mozayani, Multi-agent Q-Learning control of spacecraft formation flying reconfiguration trajectories, Advances in Space Research, 71(3) (2023) 1627-1643.
[7] P. Artitthang, M. Xu, M. Lin, Y. He, Robust optimal sliding mode control for the deployment of Coulomb spacecraft formation flying, Advances in Space Research, 71(1) (2023) 439-455.
[8] J. Martinez-Ponce, B. Herkenhoff, A. Aboelezz, M. Hassanalian, Load Distribution on “V” and Echelon Formation Flight of Flapping-Wings, in:  AIAA SCITECH 2024 Forum, 2024, pp. 2337.
[9] A.A. Elgohary, B. Moidel, A Novel Use of Model Predictive Control with Extremum Seeking in Formation Flight, in:  AIAA SCITECH 2024 Forum, 2024, pp. 2750.
[10] Y. Wang, N. Li, B. Wang, X. He, Y. Zhu, M. Zhou, Local Pursuit Strategy-Inspired Cooperative Formation Flight and Collision Avoidance for UAV Cluster, in:  ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2023, pp. V006T007A083.
[11] Q. Bian, B. Nener, X. Wang, An improved NSGA-II based control allocation optimisation for aircraft longitudinal automatic landing system, International Journal of Control, 92(4) (2019) 705-716.
[12] J. Cao, F. Garrett Jr, E. Hoffman, H. Stalford, Analytical aerodynamic model of a high alpha research vehicle wind-tunnel model, 1990.
[13] N. MR, Aircraft Dynamics. Hoboken, 2012.
[14] C.S. Buttrill, P.D. Arbuckle, K.D. Hoffler, Simulation model of a twin-tail, high performance airplane, 1992.
[15] A.R. Babaei, M. Mortazavi, M.H. Moradi, Classical and fuzzy-genetic autopilot design for unmanned aerial vehicles, Applied Soft Computing, 11(1) (2011) 365-372.