[1] S. Karimi, M.J. Oboodi, Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows, Heat and Mass Transfer, 55(2) (2019) 547-569.
[2] C.M. James, S.W. Lewis, R.G. Morgan, Y. Liu, A. Lefevre, Generating high-speed earth reentry test conditions in an expansion tube, Journal of Spacecraft and Rockets, 58(2) (2021) 345-362.
[3] H. Allen, Motion of a ballistic missile angularly misaligned with the flight path upon entering the atmosphere and its effect upon aerodynamic heating, aerodynamic loads, and miss distance, (No. NACA-TN-4048),1957.
[4] G.P. Kennedy, Vengeance weapon 2: the V-2 guided missile, Smithsonian Books (DC), 1983.
[5] A.Q. W. Dvds, and K. Dvds, North American X-15 Airplane Videos and Airplane Pictures.
[6] N.F. Palumbo, B.E. Reardon, R.A. Blauwkamp, Integrated guidance and control for homing missiles, Johns Hopkins APL Technical Digest, 25(2) (2004) 121-139.
[7] F. Stella, M. Giangi, F. Paglia, M. D'ascenzi, M. Iannuccelli, Numerical simulation of re-entry flow: Heat flux evaluation, Heat transfer engineering, 27(2) (2006) 58-69.
[8] R. Scigliano, V. De Simone, M. De Stefano Fumo, Finite Element Method for Ablative Thermal Protection Systems Design for Atmospheric Re-Entry Vehicles, in: 22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference, 2018, pp. 5207.
[9] J.A. Santos, K.T. Edquist, H.H. Hwang, Entry, Descent, and Landing Instrumentation, Planetary Sciences Decadal Survey 2023-2032, (2020).
[10] R. Muthu, S. Siva Lakshmi, S. Babu, Aerothermodynamic design and performance analysis of modified nose cones for space reentry vehicles, International Journal of Ambient Energy, 43(1) (2022) 3282-3293.
[11] R.K. Patel, K. Venkatasubbaiah, Numerical simulation of the Orion CEV reentry vehicle, Journal of Aerospace Engineering, 28(2) (2015) 04014067.
[12] O. Uyanna, H. Najafi, Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects, Acta Astronautica, 176 (2020) 341-356.
[13] J.N. Moss, C.E. Glass, F.A. Greene, Blunt body aerodynamics for hypersonic low density flows, in: 25th International Symposium on Rarefied Gas Dynamics, 2006.
[14] G. d’Humières, J. Stollery, Drag reduction on a spiked body at hypersonic speed, The Aeronautical Journal, 114(1152) (2010) 113-119.
[15] M. Barzegar Gerdroodbary, Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body, Shock Waves, 24(5) (2014) 537-543.
[16] S. Thakur, H. Kumar, S. Sarma, Flow Simulation of Atmospheric Re-entry Vehicle at Varying Mach Number and Angle of Attack, in: Advances in Electromechanical Technologies: Select Proceedings of TEMT 2019, Springer, 2021, pp. 245-251.
[17] H. Zhao, K. Peng, Z. Wu, W. Zhang, J. Yang, J. Sun, Numerical simulation of supersonic Carman curve bodies with aerospike, International Journal of Aerospace Engineering, 2021(1) (2021) 8821721.
[18] R. Sriram, G. Jagadeesh, Film cooling at hypersonic Mach numbers using forward facing array of micro-jets, International journal of heat and mass transfer, 52(15-16) (2009) 3654-3664.
[19] M.B. Gerdroodbary, S. Hosseinalipour, Numerical simulation of hypersonic flow over highly blunted cones with spike, Acta Astronautica, 67(1-2) (2010) 180-193.
[20] C. Paine, Pershing II: the Army's strategic weapon, Bulletin of the Atomic Scientists, 36(8) (1980) 25-31.
[21] F. LUND, Evolution of the Pershing II missile system, in: 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference, 1984, pp. 1966.
[22] J.W. Cleary, Effects of Angle of Attack and Bluntness on Laminar Heating-Rate Distributions of a 15 Cone at a Mach number of 10.6, National Aeronautics and Space Administration, 1969.