کنترل تطبیقی مد لغزشی نهایی برای بازوی رباتیکی هوایی در حضور عدم قطعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده هوافضا، دانشکدگان علوم و فناوری‌های میان رشته‌ای، دانشگاه تهران، تهران

چکیده

در سال‌های اخیر، استفاده از ربات‌های پرنده در کاربرد جدید تحت عنوان بازوهای رباتیکی هوایی، به منظور انجام عملیات در محیط‌های خطرناک و غیرقابل دسترس و همچنین کاهش هزینه‌ها، رایج شده است. ترکیب ربات پرنده و بازوی رباتیکی به دلیل افزایش غیرخطی بودن و کوپل شدن سیستم به طور اجتناب ناپذیری باعث ایجاد وضعیت نامساعد کنترلی و ردیابی مسیر میشود. دو رویکرد متفاوت در کنترل بازوی رباتیکی مطرح می‌باشد که شامل رویکرد متمرکز و رویکرد غیرمتمرکز است. روش کنترلی مورد استفاده در این مقاله بر اساس رویکرد غیرمتمرکز می‌باشد که در آن، نیروها و گشتاورهای بازوی رباتیکی به صورت اغتشاش خارجی به ربات پرنده اعمال می‌شود. در راستای استفاده از رویکرد غیرمتمرکز، برای کنترل بازوی رباتیکی از کنترلر جدید مقاوم تطبیقی مد لغزشی نهایی که از بخش تطبیقی به منظور تخمین کران‌های عدم قطعیت و اغتشاش استفاده شده و تضمین همگرایی در مدت زمان محدود را داشته است. همچنین از کنترلر مد لغزشی برگشتی برای ربات پرنده با تضمین پایداری لیاپانوف توسعه داده شده است. در نهایت شبیه‌سازی برای ربات پرنده کوادروتور مجهز به بازوی رباتیکی فعال دو درجه آزادی در حضور عدم قطعیت‌های جرمی برای ماموریت مسیر بررسی دکل نفتی نمایش داده شده است. نتایج شبیه‌سازی نشان دهنده دستیابی به عملکرد مطلوب در ردیابی سریع و دقیق مسیر در مدت زمان محدود با کنترلرهای پیشنهادی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Adaptive Terminal Sliding Mode Control for the UAM in the Present of Uncertainty

نویسندگان [English]

  • Hamed Ghaffari
  • Mohammad-Ali Amiri Atashgah
College of Interdisciplinary Science and Technologies- Faculty of Aerospace
چکیده [English]

In recent years, flying robots have gained popularity in a new application known as aerial robotic manipulation. This technology performs operations in dangerous and inaccessible environments, significantly reducing costs. However, combining a flying robot with a robotic arm increases system nonlinearity and coupling, leading to challenging control and path-tracking scenarios. There are two main approaches to robotic manipulation control: centralized and decentralized. This paper focuses on the decentralized approach, where the forces and torques from the robotic arm are treated as external disturbances acting on the flying robot. A novel adaptive robust terminal sliding mode controller is employed to implement this decentralized control. The adaptive component estimates the limits of uncertainties and disturbances, ensuring finite-time convergence. Additionally, a backstepping sliding mode controller with a Lyapunov stability guarantee is developed for the flying robot. Finally, a simulation is presented for an unmanned aerial manipulator equipped with a two-degree-of-freedom active robotic arm. The simulation considers mass uncertainties during an oil rig inspection mission. The results demonstrate that the proposed controllers achieve optimal performance, enabling fast and accurate path tracking within a limited time.

کلیدواژه‌ها [English]

  • Unmanned Aerial Manipulation
  • Decentralize Method
  • Backstepping Sliding Mode Control
  • Adaptive Terminal Sliding Mode Control
  • Modeling of Aerial Robot and Robotic Arm
[1] J.K. Stolaroff, C. Samaras, E.R. O’Neill, A. Lubers, A.S. Mitchell, D. Ceperley, Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery, Nature communications, 9(1) (2018) 409.
[2] M.A. Trujillo, J.R. Martínez-de Dios, C. Martín, A. Viguria, A. Ollero, Novel aerial manipulator for accurate and robust industrial NDT contact inspection: A new tool for the oil and gas inspection industry, Sensors, 19(6) (2019) 1305.
[3] D. Brescianini, R. D’Andrea, Computationally efficient trajectory generation for fully actuated multirotor vehicles, IEEE Transactions on Robotics, 34(3) (2018) 555-571.
[4] S. Shimahara, S. Leewiwatwong, R. Ladig, K. Shimonomura, Aerial torsional manipulation employing multi-rotor flying robot, in:  2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2016, pp. 1595-1600.
[5] D. Lee, D. Jang, H. Seo, H.J. Kim, Model predictive control for an aerial manipulator opening a hinged door, in:  2019 19th International Conference on Control, Automation and Systems (ICCAS), IEEE, 2019, pp. 986-991.
[6] J. Thomas, G. Loianno, K. Sreenath, V. Kumar, Toward image based visual servoing for aerial grasping and perching, in:  2014 IEEE international conference on robotics and automation (ICRA), IEEE, 2014, pp. 2113-2118.
[7] D. Mellinger, Q. Lindsey, M. Shomin, V. Kumar, Design, modeling, estimation and control for aerial grasping and manipulation, in:  2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2011, pp. 2668-2673.
[8] M. Orsag, C. Korpela, P. Oh, S. Bogdan, A. Ollero, Aerial manipulation, Springer, 2018.
[9] C. Zha, X. Ding, Y. Yu, X. Wang, Quaternion-based nonlinear trajectory tracking control of a quadrotor unmanned aerial vehicle, Chinese Journal of Mechanical Engineering, 30(1) (2017) 77-92.
[10] O. Mofid, S. Mobayen, C. Zhang, B. Esakki, Desired tracking of delayed quadrotor UAV under model uncertainty and wind disturbance using adaptive super-twisting terminal sliding mode control, ISA transactions, 123 (2022) 455-471.
[11] O. Mofid, S. Mobayen, W.-K. Wong, Adaptive terminal sliding mode control for attitude and position tracking control of quadrotor UAVs in the existence of external disturbance, IEEE access, 9 (2020) 3428-3440.
[12] O. Mofid, S. Mobayen, Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties, ISA transactions, 72 (2018) 1-14.
[13] Q. Fang, P. Mao, L. Shen, J. Wang, A global fast terminal sliding mode control for trajectory tracking of unmanned aerial manipulation, Measurement and Control, 56(3-4) (2023) 763-776.
[14] Q.V. Doan, A.T. Vo, T.D. Le, H.-J. Kang, N.H.A. Nguyen, A novel fast terminal sliding mode tracking control methodology for robot manipulators, Applied Sciences, 10(9) (2020) 3010.
[15] T.N. Truong, A.T. Vo, H.-J. Kang, A backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators, IEEE Access, 9 (2021) 31921-31931.
[16] J. Zhai, G. Xu, A novel non-singular terminal sliding mode trajectory tracking control for robotic manipulators, IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1) (2020) 391-395.
[17] M. Zhihong, M. O'day, X. Yu, A robust adaptive terminal sliding mode control for rigid robotic manipulators, Journal of Intelligent and Robotic systems, 24 (1999) 23-41.
[18] M. Zhihong, X. Yu, Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 40(3) (1997) 493-502.
[19] W.-H. Chen, J. Yang, L. Guo, S. Li, Disturbance-observer-based control and related methods—An overview, IEEE Transactions on industrial electronics, 63(2) (2015) 1083-1095.
[20] Z. Samadikhoshkho, S. Ghorbani, F. Janabi-Sharifi, K. Zareinia, Nonlinear control of aerial manipulation systems, Aerospace Science and Technology, 104 (2020) 105945.
[21] F. Caccavale, G. Giglio, G. Muscio, F. Pierri, Adaptive control for UAVs equipped with a robotic arm, IFAC Proceedings Volumes, 47(3) (2014) 11049-11054.
[22] X. Song, S. Hu, Hierarchy-based adaptive generalized predictive control for aerial grasping of a quadrotor manipulator, Journal of Shanghai Jiaotong University (Science), 24 (2019) 451-458.
[23] E. Yilmaz, H. Zaki, M. Unel, Nonlinear adaptive control of an aerial manipulation system, in:  2019 18th European control conference (ECC), IEEE, 2019, pp. 3916-3921.
[24] F. Pierri, G. Muscio, F. Caccavale, An adaptive hierarchical control for aerial manipulators, Robotica, 36(10) (2018) 1527-1550.
[25] M. Pouzesh, S. Mobayen, Event-triggered fractional-order sliding mode control technique for stabilization of disturbed quadrotor unmanned aerial vehicles, Aerospace Science and Technology, 121 (2022) 107337.
[26] M. Orsag, C. Korpela, P. Oh, S. Bogdan, M. Orsag, C. Korpela, P. Oh, S. Bogdan, Aerial manipulator dynamics, Aerial Manipulation,  (2018) 123-163.
[27] G. Heredia, A. Jimenez-Cano, I. Sanchez, D. Llorente, V. Vega, J. Braga, J. Acosta, A. Ollero, Control of a multirotor outdoor aerial manipulator, in:  2014 IEEE/RSJ international conference on intelligent robots and systems, IEEE, 2014, pp. 3417-3422.
[28] V. Lippiello, F. Ruggiero, Cartesian impedance control of a UAV with a robotic arm, IFAC Proceedings Volumes, 45(22) (2012) 704-709.
[29] T.N. Truong, A.T. Vo, H.-J. Kang, Neural network-based sliding mode controllers applied to robot manipulators: A review, Neurocomputing,  (2023) 126896.
[30] S. Yu, X. Yu, B. Shirinzadeh, Z. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41(11) (2005) 1957-1964.
[31] Y.-C. Huang, T.-Z. Li, Fuzzy terminal sliding-mode controller for robotic manipulators, in:  IEEE International Conference on Mechatronics, 2005. ICM'05., IEEE, 2005, pp. 858-863.
[32] C. Abdallah, D.M. Dawson, P. Dorato, M. Jamshidi, Survey of robust control for rigid robots, IEEE Control Systems Magazine, 11(2) (1991) 24-30.
[33] W. Dongmei, The design of terminal sliding controller of two-link flexible manipulators, in:  2007 IEEE International Conference on Control and Automation, IEEE, 2007, pp. 733-737.
[34] X. Yu, M. Zhihong, On finite time mechanism: terminal sliding modes, in:  Proceedings. 1996 IEEE International Workshop on Variable Structure Systems.-VSS'96-, IEEE, 1996, pp. 164-167.
[35] A. Boubakir, F. Boudjema, S. Labiod, A neuro-fuzzy-sliding mode controller using nonlinear sliding surface applied to the coupled tanks system, International Journal of Automation and Computing, 6 (2009) 72-80.