[1] A.C. Eringen, D. Edelen, On nonlocal elasticity,International Journal of Engineering Science, 10(3)(1972) 233-248.
[2] M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis, 57(4) (1975) 291-323.
[3] M. Gurtin, J. Weissmüller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A, 78(5) (1998) 1093-1109.
[4] R. Nazemnezhad, S. Hosseini-Hashemi, Nonlinear free vibration analysis of Timoshenko nanobeams with surface energy, Meccanica, 50(4) (2015) 1027-1044.
[5] S. Hosseini-Hashemi, R. Nazemnezhad, H. Rokni,Nonlocal nonlinear free vibration of nanobeams with surface effects, European Journal of Mechanics-A/Solids, 52 (2015) 44-53.
[6] A.G. Arani, S. Amir, P. Dashti, M. Yousefi, Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect, Computational Materials Science, 86 (2014) 144-154.
[7] A.G. Arani, M. Roudbari, Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle,Thin Solid Films, 542 (2013) 232-241.
[8] A.G. Arani, S. Amir, A. Shajari, M. Mozdianfard, Z.K.Maraghi, M. Mohammadimehr, Electro-thermal nonlocal vibration analysis of embedded DWBNNTs,Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,(2011) 0954406211422619.
[9] M. Zare, R. Nazemnezhad, S. Hosseini-Hashemi, Natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method, Meccanica, (2015) 1-18.
[10] S. Hosseini-Hashemi, M. Kermajani, R. Nazemnezhad,An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory, European Journal of Mechanics-A/Solids, 51 (2015) 29-43.
[11] S. Hosseini-Hashemi, M. Bedroud, R. Nazemnezhad, An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity, Composite Structures, 103 (2013) 108-118.
[12] C. Li, C.W. Lim, J. Yu, Twisting statics and dynamics for circular elastic nanosolids by nonlocal elasticity theory, Acta Mechanica Solida Sinica, 24(6) (2011) 484-494.
[13] C.W. Lim, C. Li, J. Yu, Free torsional vibration of nanotubes based on nonlocal stress theory, Journal of Sound and Vibration, 331(12) (2012) 2798-2808.
[14] M. Aydogdu, M. Arda, Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity,International Journal of Mechanics and Materials in Design, (2014) 1-14.
[15] J. Loya, J. Aranda-Ruiz, J. Fernandez-Saez, Torsion of cracked nanorods using a nonlocal elasticity model,Journal of Physics D: Applied Physics, 47(11) (2014)115304.
[16] M. Arda, M. Aydogdu, Torsional statics and dynamics of nanotubes embedded in an elastic medium, omposite Structures, 114 (2014) 80-91.
[17] S.S. Rao, Vibration of continuous systems, John Wiley & Sons, 2007.
[18] P. Lee, Y. Wang, X. Markenscoff, High-frequency vibrations of crystal plates under initial stresses, The Journal of the Acoustical Society of America, 57(1)(1975) 95-105.
[19] C. Liu, R. Rajapakse, Continuum models incorporating surface energy for static and dynamic response of nanoscale beams, Nanotechnology, IEEE Transactions on, 9(4) (2010) 422-431.
[20] S. Hosseini-Hashemi, M. Fakher, R. Nazemnezhad,Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko, J Solid Mech, 5(3) (2013)290-304.
[21] R. Nazemnezhad, M. Salimi, S.H. Hashemi, P.A.Sharabiani, An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects, Composites Part B: Engineering, 43(8)(2012) 2893-2897.
[22] S. Hosseini-Hashemi, M. Fakher, R. Nazemnezhad, M.H.S. Haghighi, Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects,Composites: Part B, 61 (2014) 66-72
[23] S. Hosseini-Hashemi, R. Nazemnezhad, An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects,Composites Part B: Engineering, 52 (2013) 199-206.
[24] M. Gurtin, X. Markenscoff, R. Thurston, Effect of surface stress on the natural frequency of thin crystals,Applied Physics Letters, 29(9) (1976) 529-530.