[1] Y. Zhu, M.D. Engelhardt, Z. Pan, Simulation of ductile fracture initiation in steels using a stress triaxiality–shear stress coupled model, Acta Mechanica Sinica, 35 (2019) 600-614.
[2] L. Kang, H. Ge, X. Fang, An improved ductile fracture model for structural steels considering effect of high stress triaxiality, Construction and Building Materials, 115 (2016) 634-650.
[3] Z. Peng, H. Zhao, X. Li, New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality, International Journal of Plasticity, 145 (2021) 103057.
[4] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99(1) (1977) 2-15.
[5] M. Homayounfard, M. Ganjiani, A large deformation constitutive model for plastic strain-induced phase transformation of stainless steels at cryogenic temperatures, International Journal of Plasticity, 156 (2022) 103344.
[6] C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol., 102(3) (1980) 249-256.
[7] V. Tvergaard, Material failure by void growth to coalescence, Advances in applied Mechanics, 27 (1989) 83-151.
[8] C. Wang, X.-g. Liu, J.-t. Gui, Z.-f. Xu, B.-f. Guo, Influence of inclusions on matrix deformation and fracture behavior based on Gurson–Tvergaard–Needleman damage model, Materials Science and Engineering: A, 756 (2019) 405-416.
[9] Y. Lou, J.W. Yoon, Anisotropic ductile fracture criterion based on linear transformation, International Journal of Plasticity, 93 (2017) 3-25.
[10] A.M. Freudenthal, The inelastic behavior of engineering materials and structures, Wiley, (1950).
[11] M. Cockcroft, Ductility and workability of metals, J. of Metals, 96 (1968) 2444.
[12] S. Oh, C. Chen, S. Kobayashi, Ductile fracture in axisymmetric extrusion and drawing—part 2: workability in extrusion and drawing, J. Eng. Ind. Feb, 101(1) (1979) 36-44.
[13] P. Brozzo, B. Deluca, R. Rendina, A new method for the prediction of formability limits in metal sheets, in: Proc. 7th biennal Conf. IDDR, 1972.
[14] M. Oyane, T. Sato, K. Okimoto, S. Shima, Criteria for ductile fracture and their applications, Journal of Mechanical Working Technology, 4(1) (1980) 65-81.
[15] M. Ganjiani, A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle, European Journal of Mechanics-A/Solids, 84 (2020) 104048.
[16] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, International journal of mechanical sciences, 46(1) (2004) 81-98.
[17] M.A. Wollenweber, S. Medghalchi, L.R. Guimarães, N. Lohrey, C.F. Kusche, U. Kerzel, T. Al-Samman, S. Korte-Kerzel, On the damage behaviour in dual-phase DP800 steel deformed in single and combined strain paths, Materials & Design, 231 (2023) 112016.
[18] S. Xu, L. Qian, C. Sun, F. Liu, C. Wang, Z. Sun, Y. Zhou, Investigation into the fracture behavior of ZK60 Mg alloy rolling sheet under different stress triaxiality, Journal of Materials Research and Technology, 27 (2023) 7368-7379.
[19] J. Park, S. Kweon, K. Park, Gurson-Cohesive modeling (GCM) for 3D ductile fracture simulation, International Journal of Plasticity, 175 (2024) 103914.
[20] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, International journal of fracture, 161(1) (2010) 1-20.
[21] R. Kiran, K. Khandelwal, A triaxiality and Lode parameter dependent ductile fracture criterion, Engineering Fracture Mechanics, 128 (2014) 121-138.