اثر سه محوره تنش منفی و زاویه لود بر رفتار شکست نرم فولاد اس‌تی-37

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران

چکیده

در این مقاله اثر سه محوره تنش منفی بر روی کرنش شکست مورد بررسی قرارگرفته است. در ابتدا، مدل هندسی برای نمونه‌ها با سه محوره تنش منفی به دست آمد. نمونه‌ها از جنس فولاد اس‌تی-37 ساخته شدند. برای به دست آوردن سه محوره تنش منفی در آزمون تک‌محوری فشار، هندسه قطعات به نوعی طراحی شدند که از انجام آزمون چندمحوری جلوگیری می‌کند. آزمون‌های کشش و فشار به‌منظور دستیابی کرنش شکست بر روی آن‌ها انجام شد. آزمون کشش و فشار توسط نرم‌افزار اجزای محدود آباکوس شبیه‌سازی شدند. از روش همبستگی تصویری دیجیتال برای به دست آوردن مقادیر کرنش و اعتبارسنجی نتایج شبیه‌سازی استفاده شد. شکل و نحوه آسیب نمونه‌های مختلف پس از آزمون و شبیه‌سازی باهم مقایسه شدند که نحوه شکست در هر دو روش یکسان بود. کانتورهای کرنش روش اجزای محدود و همبستگی تصویری دیجیتال با هم مقایسه شدند و مشاهده شد که مقدار کرنش هر دو روش با یکدیگر تطابق دارند. مقادیر کرنش شکست برحسب سه محوره تنش، زاویه لود بی‌بعدشده و ناوردای سوم رسم شدند. در هر دو روش تجربی و عددی، با کاهش مقدار سه محوره تنش منفی، ابتدا مقدار کرنش شکست کاهش‌یافته و سپس افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of negative stress triaxiality and lode angle on ductile fracture of ST-37

نویسندگان [English]

  • Mohsen Mansouri
  • Mehdi Ganjiani
Mechanical Engineeringو University of Tehran
چکیده [English]

In this article, the effect of negative stress triaxiality on the fracture strain has been studied. First, the geometric model was obtained for samples with three negative stress triaxialities. To obtain negative stress triaxialities in the uniaxial compression test, the geometry of samples was designed somehow that prevent multiaxial tests. Samples were manufactured from ST-37 steel. Then tensile and compression tests were performed on them in order to obtain the fracture strain. Tensile and compression tests were simulated by Abaqus software. The digital image correlation method was used to obtain the strain values and validate the simulation results. The shape and damage mode of different samples were compared after the test and simulation in which the mode of fracture was the same in both methods. The strain contours of the finite element method and digital image correlation were compared and it was observed that the strain values of both methods match each other. The fracture strains were depicted in terms of stress triaxialities, the normalized Lode angle, and the third invariant. In both experimental and numerical methods, by decreasing the amount of negative stress triaxiality, the amount of fracture strain first decreases and then increases.

کلیدواژه‌ها [English]

  • Stress Triaxiality
  • Fracture Strain
  • Digital Image Correlation
  • Lode Angle
  • Mechanical Test
[1] Y. Zhu, M.D. Engelhardt, Z. Pan, Simulation of ductile fracture initiation in steels using a stress triaxiality–shear stress coupled model, Acta Mechanica Sinica, 35 (2019) 600-614.
[2] L. Kang, H. Ge, X. Fang, An improved ductile fracture model for structural steels considering effect of high stress triaxiality, Construction and Building Materials, 115 (2016) 634-650.
[3] Z. Peng, H. Zhao, X. Li, New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality, International Journal of Plasticity, 145 (2021) 103057.
[4] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99(1) (1977) 2-15.
[5] M. Homayounfard, M. Ganjiani, A large deformation constitutive model for plastic strain-induced phase transformation of stainless steels at cryogenic temperatures, International Journal of Plasticity, 156 (2022) 103344.
[6] C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol., 102(3) (1980) 249-256.
[7] V. Tvergaard, Material failure by void growth to coalescence, Advances in applied Mechanics, 27 (1989) 83-151.
[8] C. Wang, X.-g. Liu, J.-t. Gui, Z.-f. Xu, B.-f. Guo, Influence of inclusions on matrix deformation and fracture behavior based on Gurson–Tvergaard–Needleman damage model, Materials Science and Engineering: A, 756 (2019) 405-416.
[9] Y. Lou, J.W. Yoon, Anisotropic ductile fracture criterion based on linear transformation, International Journal of Plasticity, 93 (2017) 3-25.
[10] A.M. Freudenthal, The inelastic behavior of engineering materials and structures, Wiley,  (1950).
[11] M. Cockcroft, Ductility and workability of metals, J. of Metals, 96 (1968) 2444.
[12] S. Oh, C. Chen, S. Kobayashi, Ductile fracture in axisymmetric extrusion and drawing—part 2: workability in extrusion and drawing, J. Eng. Ind. Feb, 101(1) (1979) 36-44.
[13] P. Brozzo, B. Deluca, R. Rendina, A new method for the prediction of formability limits in metal sheets, in:  Proc. 7th biennal Conf. IDDR, 1972.
[14] M. Oyane, T. Sato, K. Okimoto, S. Shima, Criteria for ductile fracture and their applications, Journal of Mechanical Working Technology, 4(1) (1980) 65-81.
[15] M. Ganjiani, A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle, European Journal of Mechanics-A/Solids, 84 (2020) 104048.
[16] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, International journal of mechanical sciences, 46(1) (2004) 81-98.
[17] M.A. Wollenweber, S. Medghalchi, L.R. Guimarães, N. Lohrey, C.F. Kusche, U. Kerzel, T. Al-Samman, S. Korte-Kerzel, On the damage behaviour in dual-phase DP800 steel deformed in single and combined strain paths, Materials & Design, 231 (2023) 112016.
[18] S. Xu, L. Qian, C. Sun, F. Liu, C. Wang, Z. Sun, Y. Zhou, Investigation into the fracture behavior of ZK60 Mg alloy rolling sheet under different stress triaxiality, Journal of Materials Research and Technology, 27 (2023) 7368-7379.
[19] J. Park, S. Kweon, K. Park, Gurson-Cohesive modeling (GCM) for 3D ductile fracture simulation, International Journal of Plasticity, 175 (2024) 103914.
[20] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, International journal of fracture, 161(1) (2010) 1-20.
[21] R. Kiran, K. Khandelwal, A triaxiality and Lode parameter dependent ductile fracture criterion, Engineering Fracture Mechanics, 128 (2014) 121-138.