ارزیابی نحوه‌ی انتخاب ظرفیت موتورگازسوز در بهینه‌سازی سیستمCCHP با استفاده از الگوریتم ژنتیک مطالعه موردی: مجتمع ورزشی آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه سیستان و بلوچستان

2 استاد مدعو دانشگاه فنی حرفه ای، مهندسی مکانیک، آموزشکده فنی حرفه ای قاین )امام خمینی )ره((

3 استادیار، دانشکده فنی مهندسی، مهندسی مکانیک، دانشگاه بزرگمهر قائنات

چکیده

در این مقاله با استفاده از سه آنالیز انرژی، اقتصادی و زیست‌محیطی به بهینه سازی ظرفیت نامی تجهیزات سیستم تولید هزمان برق، حرارت و برودت با محرک اولیه موتورگازسوز، برای یک مجتمع ورزشی آبی پرداخته شده است. آنالیزها برای دو سناریوی متفاوت تداخل سیستم با شبکه (امکان فروش الکتریسیته SSو عدم امکان فروش SNS) و نیز تعیین بهینه پارامترهای طراحی که شامل تعداد موتورگازسوز و ظرفیت نامی و بارجزیی آن‌ها، ظرفیت گرمایشی بویلر، ظرفیت سرمایشی چیلرهای الکتریکی و جذبی می‌باشند، انجام شده است. پارامترهای طراحی با استفاده از یک تابع هدف چند معیاره که سودسالیانه نسبی (RAB) نامیده می‌شود و الگوریتم ژنتیک بهینه گردیده‌اند. در گام بعدی نحوه‌ی انتخاب ظرفیت نامی موتورگازسوز از نظر اقتصادی( PB ,RAB)و صرفه جویی در مصرف سوخت(FESR) و زیست محیطی (CO2) مورد ارزیابی قرار گرفته است. نتایج‌ بهینه‌سازی نشان می‌دهد که در سناریوی امکان فروش الکتریسیته دو موتورگازسوز (با ظرفیت‌هایkW 130E1= و kW 150E2=) و در سناریوی عدم امکان فروش الکتریسیته یک موتورگازسوز (با ظرفیت kW 120E=) بیشترین مقدار تابع هدف را به همراه دارند. بعلاوه نتایج ارزیابی نحوه‌ی انتخاب موتورگازسوز نشان داد که اگر در سناریوهای امکان و عدم امکان فروش الکتریسیته دو ظرفیت مشابه به جای ظرفیت‌های بهینه انتخاب شوند، دوره بازگشت سرمایه و سود سالیانه نسبی به ترتیب افزایش و کاهش می‌یابند و پارامترهای‌ نسبت صرفه جویی در مصرف سوخت و نسبت کاهش انتشار آلاینده CO2 در سناریوی امکان(عدم امکان ) فروش الکتریسیته، روند کاهشی(افزایشی) خواهند داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

investigation of how to choose capacity of gas engine in optimization CCHP systems with GA; Case study: water sports complex

نویسندگان [English]

  • fatemeh tavakoli 1
  • mohammad ghaforiyan 2
  • mohammad hosein shafii 3
1
2
3
چکیده [English]

Energy, economic, and environmental analyses of combined cooling, heating and power (CCHP) systems were performed here to select the nominal capacities of equipment system with gas engine as prime mover for a water sport complex. The analysis was performed for both different scenarios (selling (Ss) and no-selling (SNs) electricity )from (to) grid to specify design parameters such as the number and nominal power of prime movers, heating capacities of both backup boiler and the cooling capacities of electrical and absorption chillers. By defining an objective function multi criteria called the Relative Annual Benefit (RAB), Genetic Algorithm optimization method was used for finding the optimal values of design parameters. Then, how to choose nominal capacity of gas engine has been investigated by considering the economical (RAB, PB) and fuel energy saving ratio (FESR) and environmental (CO2). The optimization results indicated that two gas engines (with nominal powers of 130 and 150 kW) in selling scenario(Ss) and one gas engine (with nominal power of 120 kW) in no-selling scenario(SNs), provided the maximum value of the objective function. Furthermore the results of the how selection gas engine show, in both two scenarios sell and No-sell electricity , if two similar capacity instead optimized capacities are selected, the payback period increases and annual benefit decreases, but the ratio of fuel energy saving and reducing of emission CO2 ratio, decrease in sell scenarios and increase in No-sell scenarios.

کلیدواژه‌ها [English]

  • Combined cooling heating and power system
  • maximum annual profit
  • selling mode
[1] F. Tavakoli Dastjerd, M. Tavakoli Dastjerd, S. Farahat,Investigated of the performance of CCHP system in
reducing pollutants emission NOx, CO2 and CO, in the 23rd annual international mechanical engineering conferenc, Tehran, IRAN, 2015(In Persian)
[2] H. Hajabdollahi, A. Ganjehkaviri, J. Mohammad Nazri Mohd, Assessment of new operational strategy
in optimization of CCHP plant for different climates using evolutionary algorithms, Applied Thermal Engineering, Vol. 75, pp. 468–480, 2015.
[3] H. Ghasemzadeh, M. Maerefat, A. Azimi, Design combined cooling, heating and power system for residential buildings in Tehran climate, Modares Mechanical Engineering, Vol. 13, No. 2, pp. 109-122,2013 (In Persian)
[4] Ashrae Handbook, Chapter S7, Cogeneration systems and engine and turbine drives, pp. 7-46, 1999
[5] M. Maerefat, P. Shafie, Design of CCHP system for office buildings in Tehran and thermodynamical,
environmental and economical evaluation in comparison to conventional system, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 124-134,2014 (In Persian)
[6] S. Sanaye , M. A. Meybodi, S. Shokrollahi, Selecting the prime movers and nominal powers in combined
heat and power systems, Apply Thermal Energy, Vol. 28, pp. 1177-1188, 2008
[7] M. Ghafooryan, F. TavakoliDastjerd, M. H.ShafieeMayam, Comparison three methods in designing CCHP system for an Industrial of case study,in the second National Application Researches in Electrical, Mechanical and Mechatronic Conference,Tehran, IRAN, 2015
[8] C. A. Gibson, M. A. Meybodi, M. Behnia, Optimisation and selection of a steam turbine for a large scale
industrial CHP (combined heat and power) system under Australia’s carbon price, Energy, Vol. 34, pp. 1-17, 2013
[9] J-J. Wang, C-F Zhang, Y-Y. Jing, Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China, Applied Energy, Vol. 87, pp. 1247-1259, 2010 .
[10] R. Hongbo, G. Weijun, Zh. Weisheng, N. Ken’ichi,Multi-criteria evaluation for the optimal adoption of
distributed residential energy systems in Japan, Energy Policy, Vol. 37, pp. 5484-5493, 2009.
[11] M. Ebrahimi, A. Keshavarz, Sizing the prime mover of a residential microcombined cooling heating and
power (CCHP) system by multi-criteria sizing method for different climates. Energy, Vol. 54, pp. 291–301,2013.
[12] M. Ebrahimi, A. Keshavarz, Prime mover selection for a residential micro-CCHP by using two multicriteria
decision-making methods. Energy Build, Vol.55, pp. 322–31, 2012.
[13] W. Qiong, R. a. Hongbo, G. b. Weijun, R. Jianxing, Multi-criteria assessment of combined cooling, heating and power systems located in different regions in Japan, Applied Thermal Engineering, doi,10.1016/j.applthermaleng.2014.08.020.
[14] M. Maerefat, P. Shafie, Multi-criteria evaluation of CCHP system under different operating strategies for an office building in Tehran using AHP method,Modares Mechanical Engineering, Vol. 14, No. 8, pp.37-48, 2014. (In Persian).
[15] P. Ahmadi, A. Almasi, I. Dincer, Multi Objective exergoenvirnomental Optimization of a Combined Heat and Power (CHP) System in a Paper Mill using Evolutionary Algorithm. International Journal of Energy Research (IJER), Vol. 1, pp. 46-63, 2012.
[16] T. T. Chow, et al. Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating, Applied Energy, Vol. 100, pp. 309–317,2012.
[17] M Liu, Y. Shi, F. Fang, A new operation strategy for CCHP systems with hybrid chillers, Applied Energy Vol. 95, pp. 164–173, 2012.
[18] J. Woolley, et al. Swimming pools as heat sinks for air conditioners, Model design and experimental validation for natural thermal behavior of the pool. Building and Environment, Vol. 46, pp. 187-195, 2011.
[19] S. Sanaye, H. Hajabdollahi, 4E analysis and Multiobjective optimization of CCHP using MOPSOA,
Proceedings of the institution of Mechanical Engineers, Part E, Vol. 228, No. 1, pp. 43–60, 2014.
[20] Catalogue of CHP Technologies, US Environmental Protection Agency, February, pp. 1-33, 2014
[21] Price of Fuel, http,//www.nigc-mpgc.ir/visited in 10 January 2015.
[22] Price of electricity, http,//bahaye_bargh.tavanir.org. ir/ visited in 10 January 2015.
[23] Price of fuel and electricity in worth, http,//www.eia.gov/ visited in 10 January 2015.
[24] Price of Carriers of Energy, http,//www.eranico.com/access in 10 January 2015.
[25] M .M. Oskoonejad. Engineering Economy. 4th ed. Amirkabir University, Tehran, Iran, Amirkabir Publishing, pp. 179–417, 2007. (In Persian)
[26] S. Sanaye, N. Khakpaay, Simultaneous use of MRM (maximum rectangle method) and optimization methods in determining nominal capacity of gas engines in CCHP (combined cooling, heating and power) systems, Energy, pp. 145-158, 2014
[27] M. Carvalho, M.A. Lozano, L.M. Serra, V.Wohlgemuth. Modeling simple trigeneration systems for the distribution of environmental loads. Environmental Modelling & Software 30, pp. 71-80, 2012
[28] K.K. Humpherys, project and cost engineers’HandBook, Marcel Dekker, New York, pp. 1–60, 2005.
[29] A. Mostafaeipour., B. Bardel., K. Mohammadi.,A. Sedaghat., Y. Dinpashoh, Economic evaluation
for cooling and ventilation of medicine storage warehouses utilizing wind catchers, Renewable and Sustainable Energy Reviews 38, pp. 12-19,2014.
[30] F. Tavakoli Dastjerd, M. M. Ghafuoryan, S. E.Shakib, Tech economic optimization of CCHP system
with rely the time value of money, in payback period,Modares Mechanical Engineering, Vol. 99, No. 9, pp.
9-99, 2015 (In Persian)
[31] M. Ebrahimi, A. Keshavarz, Climate impact on the prime mover size and design of a CCHP system for the residential building, Energy and Buildings, Vol. 54,pp. 283-289, 2012
[32] P. Ahmadi, I. Dincer, Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA), Energy , doi,10.1016/j.energy.2010.07.050, 2010