شبیه سازی عددی خنک کاری لایه ای حول پره توربین گاز توسط رهیافت میانگین گیری جزئی از معادلات ناویر- استوکس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مکانیک، دانشگاه آزاد اسلامی تهران مرکز، تهران

2 دانشجوی دکترا، مهندسی هوا و فضا، دانشگاه صنعتی شریف، تهران

3 استاد، مهندسی هوا و فضا، دانشگاه صنعتی شریف، تهران

چکیده

در این پژوهش به مطالعه عددی خنک کاری لایه ای حول یک پره توربین گاز با استفاده از رهیافت میانگین گیری جزئی از معادلات ناویر استوکس (پنس) که یکی از موفق ترین رهیافت های شبیه سازی گردابه های بسیار بزرگ (وی – ال – ای - اس) در جریانهای آشفته می باشد، پرداخته شده است. جهت بررسی دقیق جریان، مدل سازی به صورت سه بعدی حول هندسه پره توربین گاز (ایرفویل با در نظر گرفتن سوراخ های خنک کاری) انجام شده و دمای سیال ورودی و دمای سطح پره به ترتیب 5/409 درجه سانتیگراد و 7/297 درجه سانتیگراد در نظر گرفته شده است. عدد رینولدز جریان ورودی 105 X 42/8 می باشد. جریان ورودی به صورت کاملا آشفته میباشد و شدت توربلانسی آن 052/0 تنظیم شده و ضمنا از اثرات جریان های ثانویه در بالا و پایین پره چشم پوشی شده است. برای حل عددی معادلات از نرم افزار فلوئنت استفاده شده و معادلات میانگین گیری شده جزئی ناویر-استوکس (پنس) با استفاده یو – دی – اف به نرم افزار فلوئنت اعمال شده است. نتایج بدست آمده از روش پنس با نتایج تجربی موجود و نتایج مدل های دو معادله ای رنس در تحقیقات دیگر مقایسه شده که نشان میدهد روش پنس تطابق قابل قبولی با نتایج تجربی داشته و همچنین نسبت به مدل های دو معادله ای رنس دقیق تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of Film Cooling around a Gas Turbine Blade via Partially Averaged Navier-Stokes Approach (PANS)

نویسندگان [English]

  • Nima Hosseini Vajargah 1
  • Mohammadreza Salimi 2
  • Mohammad Taeibi-Rahni 3
چکیده [English]

At the present research, Film Cooling around a gas turbine blade has been studied numerically via Partially Navier-Stokes Simulation (PANS) approach which is one the most success approaches of Very Large Eddy Simulation (VLES) in turbulence flow. For detail investigation of flow around gas turbine blade (airfoil with film cooled holes on leading edge) has been simulated in three dimensions and inlet temperature and blade surface temperature has been considered: 409.5° C and 297.7° C respectively. Inlet Reynolds number is 8.42 X 105. Inlet flow is fully turbulent and turbulence intensity has been set on 0.052 meanwhile secondary flow effect in up and bottom of blade has been waived. Numerical calculation has been done by Fluent and partially averaged Navier- Stokes equations (PANS) have been applied to fluent by UDF’s. The obtained results from Partially Navier-Stokes Simulation (PANS) method have been compared with existed experimental data and other RANS two-equations models in other researches and it demonstrate that Partially Navier-Stokes Simulation (PANS) approach results has admissible correspondence with experimental data in addition these results are accurate than RANS two- equations models.

کلیدواژه‌ها [English]

  • Gas Turbine Blade
  • Film cooling
  • Turbulence Flow
  • PANS Approach
[1] M. Consigny, and B. E. Richards, 1981. “Short Duration Measurements of Heat-Transfer Rate to a Gas Turbine Rotor Blade”, International Gas Turbine Conference and Products Show, Houston, Texas,March 9-12.
[2] R. Kiock, F. Lehthaus, N. C. Baines, and C. H.Sieverding, 1985. “The Transonic Flow Through a Plane Turbine Cascade as Measured in Four European Wind”, International Gas Turbine Symposium and Exposition, Beijing, People's Republic of China,September 1-7.
[3] V. G. Garg, and A. A. Ameri, 1997. “Comparison of Two-equitation Turbulence Models For Prediction of Heat Transfer on Film-Cooled Turbine Blades”Numerical Heat Transfer, Part A, Issue 31, p.p. 347-371.
[4] T. J. Coakley, 1983. “Turbulence Modeling Methods for the Compressible Navier-Stokes Equations”, AIAA
Paper 83-1693.
[5] K. Y. Chien, 1982. “Prediction of Channel and Boundary-Layer Flows with a Low-ReynoldsNumber Turbulence Model”, AL4A J., 20, pp. 33-38.
[6] D. C. Wilcox, 1994. “Simulation of Transition with a Two-Equation Turbulence Model” , AIAAJ., 32, pp.247-255.
[7] M. Ramezanizadeh, M. Taeibi-Rahni, and M. H. Saidi,2007. “Large Eddy Simulation of Multiple Jets into a
Cross Flow”, Sharif Univ. of Tech., Scientia Iranica,14, No. 3, pp. 240-250.
[8] Kh. Javadi, M. Taeibi-Rahni, and M. Darbandi, 2007.“Jet into Cross Flow Boundary Layer Control: An
Innovation in Gas Turbine Blade Cooling”, AIAA J.,Vol. 45, No. 12, pp. 2910-2925.
[9] Kh. Javadi, 2009. “Numerical Simulation of Compressible /Incompressible Turbulent Jet in Cross Flow- New Strategies in Film Cooling”, Ph. D.Dissertation, Sharif University of Technology.
[10] M. Taeibi-Rahni, M. Ramezanizadeh, D. D.Ganji, A. Darvan, E. Ghasemi, S. Soleimani, H.Bararnia, 2011. “Comparative Study of Large Eddy Simulation of Film Cooling Using a Dynamic Globalcoefficient Subgrid Scale Eddy-Viscosity Model with RANS and Smagorinsky Modeling”, International Communications in Heat and Mass Transfer, 38,pp.659–667.
[11] F. Bazdidi-Tehrani, J. jahromi, 2011. “Analyses of Synthetic Jet Flow Filed: Application of URANS
Approach”, School of Mechanical Engineering, Iran University of Science and Technology, Transactions of the Canadian Society for Mechanical Engineering,35, No. 3.
[12] R. Farhadi-Azar, M. Ramezanizadeh, M. Taeibi-Rahni, M. R .Salimi, 2011. “Compound Triple Jets Film ooling Improvements via Velocity and Density Ratios: Large Eddy Simulation”, Department of Aerospace Engineering, Sharif University of Technology, Journal of Fluids Engineering, 133.
[13] F. Bazdidi-Tehrani, S. Khajeh hasani, M. Rajabizargarabadi,2009. “Opposed Row of Coolant Jet Injected into Heated Crossflow: Investigation of Variable Turbulence Prandtl Number”, Departement of Mechanical ngineering, Iran Univercity of Science and Technology,17th Annual (International) Conference of Mechanical Engineering.
[14] S. S. Girimaji, E. Jeong, , and R. Srinivasan, 2006.“Partially Averaged Navier-Stokes Method for Turbulence: Fixed Point Analysis and Comparison With Unsteady Partially Averaged Navier-Stokes”Journal of applied mechanics, 73, Issue 1, p.p. 422-429.
[15] S. Lakshimpathy, 2004. “PANS Method for Turbulence:Simulation of High and Low Reynolds Nymber Flows Past a Cyrcular Cylinder” , M. Sc.Thesis, Texas A&M University, December.
[16] S.Lakshmipathy, 2009. “Partially Averaged Navier-Stokes Method for Turbulence Closure: Characterization of Fluctuations and Extension to Wall Bounded Flows”, Ph. D. Dissertation, Texas A&M University, May.
[17] C. S. Song, and O. Park, 2009. “Numerical Simulation of Flow Past a Square Cylinder Using Partially-
Averaged Navier–Stokes model”, Journal of Wind Engineering and Industrial Aerodynamics, 97 Issue 2,p.p. 37–47.
[18] C. Camci, and T. Arts, 1985. “Experimental Heat Transfer Investigation Around the Film Cooled Leading Edge of a High Pressure Gas Turbine Rotor Blade” 30th International Gas Turbine Conference and Exhibit, Houston, Texas, March 18-21.
[19] V. K. Garg, D. L. Rigby, 1999. “Heat transfer on a Film-cooled blade Effect of hole physics” International
Journal of Heat and Fluid Flow, Issue 20, p.p. 10-25.
[20] M. H. Nirooie, 2010. “Numerical Simulation of Flow Past a Cylinder Near a Flat Plate Using Partially-
Averaged Navier–Stokes model”, M. Sc. Thesis,Sharif University, December.
[21] P. Nodberg, 2000. “Turbulent Combustion Modeling”,Cambridge Univ. Press, Cambridge.
[22] I. B. Celik, 1999. “Intruductory Turbulence Modeling”, M.Sc. Thesis, West Virginia University,Mechanical & Aerospace Engineering Dept.
[23] M. Breuer, 2000. “A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow’, Internat. J. Heat Fluid Flow 21 p.p.648–654.
[24] B. Cantwell, and D. Coles, 1983. “An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder”, J. Fluid p.p.321–374 Mech. 136.
[25] Abbasi, B., 2012. “Numerical Investigation of Gas Turbine Blade Cooling”, M.Sc. Thesis, Isfahan University of Technology (In Persian).