انتقال حرارت جابجایی توام نانوسیال در یک محفظه باز بافل دار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه شهرکرد

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه شهرکرد

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه شهرکرد

چکیده

چکیده
در این مقاله جریان جابجایی همزمان آزاد و اجباری، نانوسیال در یک محفظه باز مستطیلی به روش عددی بررسی شده است. نانو سیال با سرعت یکنواخت در دمای ثابت سرد وارد محفظه باز شده و با کف محفظه که تحت شار حرارتی ثابت قرار دارد، تبادل حرارت می کند. معادلات پیوستگی، مومنتوم و انرژی به روش حجم کنترل جبری شده و به کمک الگوریتم سیمپل به صورت همزمان حل شده است. در این مطالعه با ثابت در نظر گرفتن عددریلی، ، اثر عدد ریچاردسون، ، تغییر نسبت حجمی نانو ذرات، ، فاصله بافل از ورودی، ، و نوع نانو ذرات بررسی شده است. نتایج نشان می دهد که افزایش عدد ریچاردسون موجب کاهش و افزایش نسبت حجمی نانو ذرات موجب افزایش عدد نوسلت متوسط می گردد. این در حالی است که افزایش فاصله بافل از ورودی محفظه ابتدا باعث افزایش و سپس کاهش نوسلت متوسط شده و می توان فاصله بهینه ای برای آن پیش بینی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Nanofluid mixed-convection heat transfer in a ventilated cavity with a baffle

نویسندگان [English]

  • mojtaba moradzadeh 1
  • behzad ghasemi 2
  • Afrasiyab Raisi 3
3 Associate Professor of Mechanical Engineering, Shahrekord University
چکیده [English]

The present paper reports numerical results of mixed-convection heat transfer with nanofluid in a horizontal ventilated cavity heated from below and provided with an thin partition on the heated surface. Free flow at cold temperature enters the cavity and takes heat from a heat source. Discretization of the governing equations are achieved through a finite volume method and solved with the SIMPLE method. The effects of the governing parameters, such as the Richardson number, , the baffle position from the inlet, , solid volume fraction, ,and the nanoparticle type on the fluid flow and heat transfer characteristics are studied in detail. The results show that increases in Richardson number results in reduction of the average Nusselt number and increase in solid concentration leads to increases in the average Nusselt number. Also, the results predict an optimal value for baffle position.

کلیدواژه‌ها [English]

  • mixed convection
  • Nanofluid
  • ventilated cavity
  • baffle
[1] E. Bilgen, A., H. Oztop, B ., 2004. “Natural convection heat transfer in partially open inclined square cavities”.
Int. J. Heat and Mass Transfer , 48, pp. 1470–1479.
[2] Ahmet Koca A., 2008. “Numerical analysis of conjugate heat transfer in a partially open square cavity with a vertical heat source”. Int. Communications in Heat and Mass Transfer , 35 ,1385–1395.
[3] Raji, A., Hasnaoui M, B ., 1998. “Mixed convection heat transfer in a rectangular cavity ventilated and heated from the side. Numer Heat Transfer” 33, pp.533-48.
[4] Sey-ping How.,Tsan-hui Hsu.,1998. “transient mixed in a convection partially divided enclosure” computers
math. applic, 36, no.8, pp.95-115.
[5] A.Bahlaoui., A. Raji ., M. Hasnaoui ., M. Naïmi ., T.Makayssi ., M. Lamsaad., 2009. “Mixed convection cooling combined with surface radiation in a partitioned rectangular cavity”. filled Energy Conversion and Management; 50:626-635.
[6] S. M Aminossadati., B. Ghasemi., 2009. “A numerical study of mixed convection in a horizontal channel with
a discrete heat source in an open cavity” European Journal of Mechanics B/Fluids 28, 590–598.
[7] S. Lee. S.U.S. Choi, S. Li, J.A. Eastman, 1999.“Measuring thermal conductivity of fluids containing oxide nanoparticles”.Trans. ASME J. Heat Transfer 121 280–289.
[8] Y. Xuan.,Q. Li., 2000. “Heat transfer enhancement of nanofluids”.Int. J. Heat Fluid Flow 21, 58–64, 2000.
[9] Y. Xuan.,W. Roetzel., “Conceptions for heat transfer correlation of nanofluids”. Int. J. Heat Mass Transfer
43 3701–3707.
[10] S.K. Das., N. Putra., P. Thiesen., W. Roetzel., 2003.“Temperature dependence of thermal conductivity
enhancement for nanofluids”. J. Heat Transfer 125 ,567–574.
[11] K. Santra, A., S. Sen, B., and N. Chakraborty, 2009.“Study of Heat Transfer Due to Laminar Flow of
Copper-Water Nanofluid through Two Isothermally Heated Parallel Plates”. Thermal Sciences, 48, no. 2,pp. 391–400.
[12] A. H. Mahmoudi , M. Shahi, A. M. Shahedin, and N. Hemati, 2010. “Numerical modeling of natural convection in an open cavity with two vertical thin”.Int. Communications in Heat and Mass Transfer, 38,pp. 110–118.
[13] M. shahi, A. H. Mahmoudi, and F. Talebi, 2009. “N,1983.umerical study of mixed convection cooling in a
square cavity ventilated and partially heated from the below utilizing nanofluid”, Int. Communications in Heat and mass transfer, 37, pp. 201–213.
[14] H. C. Brinkman, 1952. “The Viscosity of Concentrated Suspensions and Solution”, Chem. Phys. 20, pp. 571–
581.
[15] H.E. Patel, T. Pradeep , T. Sundarrajan, A. Dasgupta,N. Dasgupta , and S.K. Das, 2005. “A micro-convection
model for thermal conductivity of nanofluid”,Pramana–J. Phys. 65, PP.863–869.
[16] E. Abu-Nada, Z. Masoud, B. Hijazi, 2008. “Natural convection heat transfer enhancement in horizontal
concentric annuli using nanofluids”. Heat Mass Transf, 35, no.5, PP.657–665.
[17] S.V.Patankar, 1980. “Numerical Heat Transfer and Fluid Flow” ,Hemisphere,Washington., D.C.
[18] De Vahl Davis, 1983. “Natural convection in a square cavity”. A benchmark numerical solution, Int. J.Numer. Methods Fluids 3,249–264.