توسعه فیلتر پیش‌بین تعمیم‌یافته برای سامانه های خطی گسسته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 دانشکده مهندسی برق، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

در این مقاله براساس وجود همسانی بین مفهوم کنترل پی شبین تعمیم یافته و مسأله عمومی تخمین، دو فیلتر جدید با نامهای فیلتر پیش بین تعمیم یافته و فیلتر کالمن پیش بین تعمیم یافته برای سامانه های گسستۀ خطی توسعه یافته است. این فیلترها برخلاف ساختار پیچیده و مشکلات به کارگیری فیلترهای پیش بین موجود، روابط بسیار ساده ای داشته و پیاده سازی آنها به صورت برگشتی بسیار راحت خواهد بود. در فیلترهای توسعه داده شده، خطای مدل سامانه ماهیت مستقلی از نویز فرآیند دارد. با تعریف یک تابع هزینه و کمینه کردن آن نسبت به خطای مدل در هر قدم زمانی، خطای بهینه ای از مدل سامانه در دسترس خواهد بود که با جبران آن در مدل پی شبینی زمانی سامانه، دقت تخمین حال تها حتی با وجود نامعین یهای سامانه بهبود خواهد یافت. با اضافه شدن این سناریوی تخمین بهینۀ خطای مدل سامانه به فیلتر کالمن و بهسازی رابطه بهنگام سازی زمانی فیلتر کالمن توسط خطای مدل محاسبه شده، فیلتر مرکبی تولید میگردد که نوید بهبود عملکرد محسوسی را نسبت به فیلتر کالمن می دهد. عملکرد فیلترهای توسعه داده شده و میزان مقاومت آنها در برابر نامعین یهای سامانه در دو مثال عددی تحقیق شده و نتایج آنها با عملکرد فیلتر کالمن و فیلتر کالمن فراموش کار مورد مقایسه قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Generalized Predictive Filter for Discrete-Time Linear Systems

نویسندگان [English]

  • M. Fathi 1
  • N. Ghahramani 2
  • M.A. Shahi Ashtiani 1
  • M. Fallah 2
  • A. Mohammadi 2
1 Malek Ashtar University of Technology/Academic Institute of Aerospace Engineering
2 Malek Ashtar University of Technology/Academic Institute of Electrical Engineering
چکیده [English]

In this paper, based on the duality between the predictive control and general estimation
problem, two new predictive filters, named generalized predictive filter and generalized predictive
Kalman filter, are developed. The major advantage of the new filters over the existing predictive filters
are that their structure are very simple and their application as a recursive filter is not complicated. Unlike
the Kalman filter, these proposed predictive filters assume that process noise and model error are not
equivalent and there are no limitations about the form of model error so that this model error can appear
in a nonlinear form or even a colored noise. By minimizing a quadratic cost function consisting of a
measurement residual term and a model error term respect to the process model error, the optimal model
error is determined. Compensation of this model error in the time update state model provides accurate
estimates even in the presence of dynamic uncertainty. Combination of Kalman filter and generalized
predictive filter improves the performance and robustness of Karman filter. The validity of the suggested
filters is illustrated by a numerical example and their performance and robustness are compared with
those of KF and the fading Kalman filter.

کلیدواژه‌ها [English]

  • Generalized Predictive Filter
  • State Estimation
  • Kalman Filter
  • Optimal estimation
  • Uncertainty
[1] D.J. Mook, J.L. Junkinst, Minimum Model Error Estimation for Poorly Modeled Dynamic Systems, Journal of Guidance, Control, and Dynamics, AIAA, 11(3) (1988) 256–261.
[2] J.L. Crassidis, F.L. Markley, Predictive Filtering for Nonlinear System, Journal of Guidance, Control, and Dynamics, AIAA, 20(3) (1997) 566–572.
[3] J.L. Crassidis, F.L. Markley, Predictive Filtering for Attitude Estimation Without Rate Sensors, Journal of Guidance, Control, and Dynamics, AIAA, 20(3) (1997)522–527.
[4] Y. Lin, Z. Deng, Star-Sensor-Based Predictive Kalman Filter for Satellite Attitude Estimation, Sci. China (Series F), 45(3) (2002) 189–195.
[5] J. Fang, X. Gong, Predictive Iterated Kalman Filter for INS/GPS Integration and Its Application to SAR Motion Compensation, IEEE Transactions on Instrumentation and Measurement, 59(4) (2010) 909–915.
[6] L. Zhang, S. Zhang, S. Qian, Federated Nonlinear Predictive Filtering for invariant systems, IEEE Transactions on Automatic Control, 44(9) (2011) 1–6.
[7] E.F. Camacho, C. Bordons, Model Predictive Control, Springer-Verlag, London,1999.
[8] J.M., Maciejowski, , Predictive control with Constraints, Prentice-Hall,2002.
[9] K.B., Petersen, M.S. Pedersen, The Matrix Cookbook, Technical University of Denmark, 2012.
[10] W.H. Kwon, S. Han, Receding Horizon Control, Springer-Verlag, London, 2005.
[11] Kwon, W. H., Kim, P. S., and Park, P., “A receding horizon kalman FIR filter for discrete time-Invariant Systems, 44(9) (1999) 1787-1791
[12] J.E. Slotine, and P. Hall, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey,1991.
[13] D. Simon, optimal state estimation, John Wiley & Sons, Hoboken, New Jersey,2006.
[14] C. Thomas, ed., Sensor Fusion and its Applications, InTech, Shanghai, Chap. 4, 2010.