[1] C. Vives, C. Perry, Effects of magnetically damped convection during the controlled solidification of metals and alloys, Int. J. Heat Mass Transfer, 30(3) (1987) 479-496.
[2] H. P. Utech, M. Flemings, Elimination of Solute Banding in Indium Antimonide Crystals by Growth in a Magnetic Field, J. Appl. Phys., 37 (1966) 2021-2024
[3] K. Okada, H. Ozoe, Experimental Heat Transfer Rates of Natural Convection of Molten Gallium Suppressed Under an External Magnetic Field in Either the X, Y, or Z Direction, J. Heat Transfer, 114(1) (1992) 107-114.
[4] J.P. Garandet, T. Alboussière, R. Moreau, Buoyancy Driven Convection in a Rectangular Enclosure with a Transverse Magnetic Field, Int. J. Heat Mass Transfer 35(1992) 741-748.
[5] N. Rudraiah, R.M. Barron, M. Venkatachalappa, C.K.Subbaraya, Effect of a magnetic field on free convection in a rectangular enclosure, Int. J. Eng. Sci., 33(8) (1995)1075-1084.
[6] S. Jani, M. Mahmoodi, M. Amini., Magnetohydrodynamic Free Convection in a Square Cavity Heated from Below and Cooled from Other Walls, Int. J. Mech. Indu. Sci.Eng., 7(4) (2013) 331-336.
[7] M. Pirmohammadi, M. Ghassemi, Effect of magnetic field on convection heat transfer inside a tilted square enclosure, Int. ommun. Heat Mass 36(7) (2009) 776-780.
[8] M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, S.Soleimani, Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO–water nanofluid in presence of magnetic field, J Taiwan Inst Chem Eng 45(1) (2014) 40-49.
[9] S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Clarendon Press, 2001.
[10] D. Yu, R. Mei, L.-S. Luo, W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerosp. Sci., 39(5) (2003) 329-367.
[11] A. Karimipour, A. Hossein Nezhad, A. D’Orazio, M.Hemmat Esfe, M.R. Safaei, E. Shirani, Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method, Eur J Mech B Fluids, 49(Part A) (2015) 89-99.
[12] H.R. Ashorynejad, A.A. Mohamad, M. Sheikholeslami, Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method, Int. J. Therm. Sci., 64(Supplement C) (2013) 240-250.
[13] A. Mahmoudi, I. Mejri, M.A. Abbassi, A. Omri, Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution, Powder Technol., 256(Supplement C) (2014) 257-271.
[14] P. Lallemand, L.-S. Luo, Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability, Phys Rev E, 61 (2000)6546-6562.
[15] I. Ginzburg, D. d'Humières, Multi-reflection boundary conditions for lattice Boltzmann models, Phys Rev E, 68(2003) 066614-066611.
[16] D. d'Humières, Generalized Lattice-Boltzmann Equations, in: Rarefied Gas Dynamics: Theory and Simulations, B.D. Shizgal, D.P. Weaver (Eds.), Progress in Astronautics and Aeronautics, AIAA, Washington, DC,1992, pp. 450-458.
[17] R. Du, B. Shi, X. Chen, Multi-relaxation-time lattice Boltzmann model for incompressible flow, Phys. Lett. A,359(6) (2006) 564-572.
[18] X.D. Niu, C. Shu, Y.T. Chew, Y. Peng, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys. Lett. A, 354(3) (2006) 173-182.
[19] L. Zheng, B. Shi, Z. Guo, Multiple-relaxation-time model for the correct thermo hydrodynamic equations,Phys Rev E, 78 (2008) 026705.
[20] A. Rahmati, M. Ashrafizadeh, E. Shirani, Novel Hybrid Finite-Difference Thermal Lattice Boltzmann Models for Convective Flows, Heat Transf. Res., 40 (2009) 747-775.
[21] A.A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, Springer London, 2011.
[22] P.A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, 2001.
[23] J. Wang, D. Wang, P. Lallemand, L.-S. Luo, Lattice Boltzmann simulations of thermal convective flows in two dimensions, Comput. Math. Appl., 65(2) (2013) 262-286.
[24] I. Ginzburg, D. Dhumieres, A. Kuzmin, Optimal Stability of Advection-Diffusion Lattice Boltzmann Models with Two Relaxation Times for Positive/Negative Equilibrium, J. Stat. Phys., 139 (2010) 1090-1143.
[25] M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, Springer, 2006.
[26] K. Khanafer, K. Vafai, M. Lightstone, Buoyancydriven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46(19) (2003) 3639-3653.
[27] B. Ghasemi, S.M. Aminossadati, A. Raisi, Magnetic field effect on natural convection in a nanofluid-filled square enclosure, Int. J. Therm. Sci., 50(9) (2011) 1748- 1756.
[28] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 1980.