بررسی عددی تاثیر ته‌نشینی نانوذرات بر میدان‌های جریان، انتقال حرارت و انتقال جرم نانوسیال آب- اکسید آلومینیوم در یک محفظه

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

چکیده

در این تحقیق میدان‌های جریان، انتقال حرارت و انتقال جرم نانوسیال آب-اکسیدآلومینیوم به‌عنوان مخلوطی دوجزئی در محفظه‌ای مربعی با لحاظ مکانیزم‌های حرکت براونی، ترموفرسیس و ته‌نشینی در بازه زمانی 30 روزه به صورت عددی بررسی شده است. دیواره سمت چپ محفظه گرم، دیواره سمت راست آن سرد و اختلاف دمای بین آنها 8کلوین  می‌باشد. دیواره‌های افقی نیز عایق درنظرگرفته شده‌اند. برای لحاظ تغییرات کسر حجمی نانوذرات با گذشت زمان از مدلی تجربی استفاده شده است. معادلات مومنتوم، انرژی و انتقال ذرات با استفاده از روش حجم محدود و به کمک الگوریتم سیمپلر حل شده‌اند. کسر حجمی اولیه نانوذرات برابر 0/0025، 0/0077و 0/013 ، مدت زمان قرارگیری تحت امواج فراصوت 1، 2 و 3 ساعت و محدوده اعداد رایلی از 102 تا 105 می‌باشد. نتایج حاصل‌شده نشان می‌دهند که ضریب بهبود با گذشت زمان و ته‌نشینی نانوذرات در اعداد رایلی 102 و 103 کاهش می‌یابد. اما این ضریب با گذشت زمان در اعداد رایلی 104 و 105 و کسر حجمی 0/0025 کاهش، در کسر حجمی 0/013 افزایش و در کسر حجمی 0/0077 با توجه به افزایش همزمان ضریب هدایت حرارتی و لزجت دارای نقطه بحرانی می‌باشد، به‌طوری که ضریب بهبود تا قبل از نقطه بحرانی افزایش و بعد از آن کاهش می‌یابد. همچنین نتایج عددی نشان می‌دهند که با درنظرگرفتن سرعت ته‌نشینی نانوذرات، گرادیان غلظت در نزدیکی دیواره‌های سرد و گرم افزایش یافته و عدد ناسلت متوسط کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Sedimentation of Nanoparticles on Flow, Heat and Mass Transfer of Al2O3-water Nanofluid in a Cavity

نویسندگان [English]

  • Gh. A. Sheikhzadeh
  • M. Mollamahdi
Mechanical Engineering Department, University of Kashan, Kashan, Iran
چکیده [English]

In this study, effects of transport mechanisms of nanoparticles such as: sedimentation,Brownian motion, and thermophoresis in natural convection of Al2O3-water nanofluid as a twocomponent mixture on flow field, heat transfer and mass transfer during a period of thirty days have been investigated numerically. Left and right walls of the cavity are hot and cold, respectively. The temperature difference between two vertical walls is 8 K. In order to consider the variations of the volume fraction of nanoparticles versus time, an experimental model during a period of thirty days have been applied. The momentum, energy and mass transfer equations have been solved using the finite volume method. The initial volume fractions of nanoparticles are 0.0025, 0.0077 and 0.013, the ultrasonicator dispersion time is 1, 2 and 3 hours, and Rayleigh number range is from 102 to 105. The results show that in low Rayleigh number (102 and 103), during a period of time and sedimentation of nanoparticles, the heat transfer enhancement coefficient (E) is reduced. In Ra=104 and 105 with φb=0.0025, E is decreased as time passed. In φb=0.0077, the value of the E has a critical point due to the increasing thermal conductivity and viscosity coefficient, so that before the critical point, the E has increased and then has decreased. In φb=0.013, the E is increased over time. It is also observed that including the effect of sedimentation
velocity is increased the thickness of mass boundary layer and the Nusselt number are reduced.

کلیدواژه‌ها [English]

  • numerical simulation
  • Nanofluid
  • Thermophoresis
  • Brownian motion
  • Sedimentation
[1] K. Khanafer, K. Vafai, M. Lightstone, Buoyancydriven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, International journal of heat and mass transfer, 46(19) (2003) 3639-3653.
[2] N. Putra, W. Roetzel, S.K. Das, Natural convection of nano-fluids, Heat and Mass Transfer, 39(8-9) (2003)775-784.
[3] D. Wen, Y. Ding, Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids), IEEE Transactions on Nanotechnology,5(3) (2006) 220-227.
[4] E .Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, International Communications in Heat and Mass Transfer, 35(5) (2008) 657-665.
[5] E. Abu-Nada, Z. Masoud, H.F. Oztop, A. Campo, Effect of nanofluid variable properties on natural convection in enclosures, International Journal of Thermal Sciences, 49(3) (2010) 479-491.
[6] M. Ali, O. Zeitoun, S. Almotairi, Natural convection heat transfer inside vertical circular enclosure filled with water-based Al2O3 nanofluids, International Journal of Thermal Sciences, 63 (2013) 115-124.
[7] Y. Hu, Y. He, C. Qi, B. Jiang, H.I. Schlaberg, Experimental and numerical study of natural convection in a square enclosure filled with nanofluid, International Journal of Heat and Mass Transfer, 78 (2014) 380-392.
[8] J. Koo, C. Kleinstreuer, Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids, nternational Communications in Heat and Mass Transfer, 32(9) (2005) 1111-11118.
[9] J. Buongiorno, Convective transport in nanofluids, Journal of Heat Transfer, 128(3) (2006) 240-250.
[10] H.A. Pakravan, M. Yaghoubi, Combined thermophoresis, Brownian motion and Dufour effects on natural convection of nanofluids, International Journal of Thermal Sciences, 50(3) (2011) 394-402.
[11] H.A. Pakravan, M. Yaghoubi, Analysis of nanoparticles migration on natural convective heat transfer of nanofluids, International Journal of Thermal Sciences, 68 (2013) 79-93.
[12] G.A. Sheikhzadeh, M. Dastmalchi, H. Khorasanizadeh, Effects of nanoparticles transport mechanisms on Al 2O 3–water nanofluid natural convection in a square enclosure, International Journal of Thermal Sciences, 66(2013) 51-62.
[13] F. Garoosi, S. Garoosi, K. Hooman, Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model, Powder Technology, 268 (2014) 279-292.
[14] M. Eslamian, M. Ahmed, M. El-Dosoky, M. Saghir, Effect of thermophoresis on natural convection in a Rayleigh–Benard cell filled with a nanofluid, International Journal of Heat and Mass Transfer, 81(2015) 142-156.
[15] M. Dastmalchi, G. Sheikhzadeh, A.A. Arani, Doublediffusive natural convective in a porous square enclosure filled with nanofluid, International Journal of Thermal Sciences, 95 (2015) 88-98.
[16] C. Ho, D.-S. Chen, W.-M. Yan, O. Mahian, Rayleigh–Bénard convection of Al2O3/water nanofluids in a cavity considering sedimentation, thermophoresis, and Brownian motion, International Communications in Heat and Mass Transfer, 57 (2014) 22-26.
[17] C. Ho, D.-S. Chen, W.-M. Yan, O. Mahian, Buoyancydriven flow of nanofluids in a cavity considering the Ludwig–Soret effect and sedimentation: Numerical study and experimental validation, International Journal of Heat and Mass Transfer, 77 (2014) 684-694.
[18] H. Rehman, M. Batmunkh, H. Jeong, H. Chung, Sedimentation study and dispersion behavior of Al2O3–H2O nanofluids with dependence of time, Advanced Science Letters, 6(1) (2012) 96-100.
[19] F.P. Incropera, D.P. Dewitt, Introduction to Heat Transfer, Jone Willy & Sons, Inc., New York, (1985).
[20] H.M. Elshehabey, S.E. Ahmed, MHD mixed convection in a lid-driven cavity filled by a nanofluid with sinusoidal temperature distribution on the both vertical walls using Buongiorno’s nanofluid model, International Journal of Heat and Mass Transfer, 88 (2015) 181-202.
[21] G. McNab, A. Meisen, Thermophoresis in liquids, Journal of Colloid and Interface Science, 44(2) (1973)339-346.
[22] M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conversion and Management, 52(1) (2011) 789-793.
[23] C. Ho, W. Liu, Y. Chang, C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, International Journal of Thermal Sciences, 49(8) (2010) 1345-1353.
[24] S. Patankar, Numerical heat transfer and fluid flow, CRC press, 1980.
[25] M. Mollamahdi, Numerical study of sedimentation effect on flow field and heat transfer of water-Al2O3 nanofluid in a cavity (MSc dissertation), Department of Mechanical Engineering, University of Kashan, (2015).(in persian)