طراحی کنترل کنندۀ وضعیت تطبیقی برای شبیه ساز آزمایشگاهی سمت فضاپیما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 پژوهشکده علوم و فناوری فضا، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

چکیده: در این مقاله پس از معرفی مختصری از شبیه‌ساز سمت دانشگاه صنعتی امیرکبیر به استخراج روابط حاکم بر آن پرداخته می‌شود. به‌دلیل وجود اصطکاک در یاتاقان‌های شبیه‌ساز سمت، در دینامیک شبیه‌ساز از مدل اصطکاک ویسکوز برای مدل‌سازی اصطکاک در یاتاقان‌ها استفاده می‌شود. هدف این مقاله طراحی یک کنترل‌کنندۀ وضعیت تطبیقی برای کنترل
شبیه‌ساز سمت و تخمین ضرایب اصطکاک ویسکوز یاتاقان‌ها می‌باشد. به‌منظور جلوگیری از پدیده تکینگی در روابط حاکم، از پارامترهای رودریگز برای نمایش سینماتیک شبیه‌ساز استفاده می‌شود. ابتدا روابط حاکم بر شبیه‌ساز به فرم رباتیکی استخراج می‌شود. سپس پارامترهای تانسور ممان اینرسی شبیه‌ساز سمت و ضرایب اصطکاک ویسکوز به عنوان پارامترهای نامعلوم سامانه انتخاب م یشوند. در مرحله بعد با تعریف یک تابع لیاپانوف و بررسی پایداری سامانه، پارامترها به گون های تخمین زده م یشوند که خطا محدود شده و سامانه پایدار گردد. در مرحله بعد شبیه‌سازی سامانه در نرم‌افزار متلب انجام شده و تخمین پارامترهای تانسور اینرسی و ضرایب اصطکاک ویسکوز به‌دست می‌آیند. در نهایت با به‌دست آمدن نمودارهای مربوط به سرعت عملگرهای چرخ عکس‌العملی نشان داده خواهد شد که این کنترل کنندۀ وضعیت قابلیت پیاده‌سازی بر روی شبیه‌ساز سمت امیرکبیر را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing an Adaptive Control Algorithm for Amirkabir’s Laboratory Attitude Simulator of a Spacecraft

نویسندگان [English]

  • M. Nabipour 1
  • M. Kabganian 1
  • F. F. Saberi 2
1 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
2 Faculty of Space Science and Technology Institute, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

ABSTRACT: In this paper, after presenting a brief introduction about Amirkabir University of Technology’s
attitude simulator, governing equations are obtained. Viscous friction model is chosen to model the existing friction
in the bearings of the attitude simulator. The main purpose of this paper is to design an adaptive attitude control
algorithm for the attitude simulator in order to control it in the desired path and estimate the coefficients of friction
due to simulator’s bearings. In order to prevent singularity in simulations, Rodriguez parameters are used for
kinematics representation. Firstly, the governing equations are transformed into a robotic form. The moments of
inertia and coefficients of viscous friction model are assumed as uncertainties. Then, by introducing a Lyapunov
function, the stability of the system is checked and the parameters are estimated. The adaptation law is obtained
by the Lyapunov function and the stability of the system is then proved. In order to demonstrate the efficiency of
this adaptive control algorithm, a nonlinear Lyapunov-based attitude control algorithm is designed and compared to
the adaptive controller. The simulations are done in Matlab software package and the parameters of the moment of
inertia matrix and coefficients of viscous friction model are estimated by the adaptation law of the controller. During
the simulation, the rotational velocity of the reaction wheels are obtained and it is shown that this attitude control
algorithm is implementable on the attitude simulator.

کلیدواژه‌ها [English]

  • Satellite
  • Attitude Simulator
  • Robotic form of satellite dynamic equation
  • Adaptive control
  • Parameter estimation
[1] M. Nasirian, H. Bolandi, A.K. Sedigh, A. Khoogar, Design of a satellite attitude control simulator, in: Systems and Control in Aerospace and Astronautics, 2006. ISSCAA 2006. 1st International Symposium on,IEEE, 2006, pp. 4 pp.-163.
[2] H. Bolandi, M. Haghparast, F.F. Saberi, B.G. Vaghei,S.M. Smailzadeh, On-Board electronic Of Satellite Attitude Determination and Control Subsystem: Design and Test in Hardware in the Loop Test Bed, Journal of Institute of Measurement and Control, 45(5) (2011).151-157
[3] H. Bolandi, F.F. Saberi, B.G. Vaghei, Design of a supervisory adaptive attitude control (SAAC) system for a stereo-imagery satellite based on multiple model control with switching, International Journal of  Innovative Computing, Information and Control, 6(9)(2010) 4675-4692.
[4] M.C. Downs, Adaptive Control Applied to the Cal Poly Spacecraft Attitude Dynamics Simulator, (2010).
[5] U.o. Ottawa, in, 2015.
[6] T.a.I. The Research Institute for Science, in, 2018.
[7] I.S.R. Center, in, 2016.
[8] H. Yoon, P. Tsiotras, Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes, Journal of Guidance, Control, and Dynamics, 25(6) (2002) 1081-1090.
[9] X. Yue, D. Vilathgamuwa, S. Jian, Adaptive tracking control of PMSM for satellite ADCS hardware-in-theloop simulation test, in: Industrial Technology, 2005.ICIT 2005. IEEE International Conference on, IEEE, 2005, pp. 1024-1029.
[10] W. MacKunis, K. Dupree, N. Fitz-Coy, W. Dixon, Adaptive satellite attitude control in the presence of inertia and CMG gimbal friction uncertainties, The Journal of the Astronautical Sciences, 56(1) (2008) 121- 134.
[11] A. Fazlyab, A. Ajorkar, M. Kabganian, Design of an adaptive controller of a satellite using thruster actuator, International Journal of Computer Applications, 102(10)(2014) 6-12.
[12] J. Ahmed, V.T. Coppola, D.S. Bernstein, Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix  identification, Journal of Guidance, Control, and Dynamics, 21(5) (1998). 684-91.
[13] R.H. Bishop, S.J. Paynter, J.W. Sunkel, Adaptive control of space station with control moment gyros, IEEE Control Systems, 12(5) (1992) 23-28.
[14] J.-J. Sheen, R.H. Bishop, Adaptive nonlinear control of spacecraft, in: American Control Conference, 1994, IEEE, 1994, pp. 2867-2871.
[15] J. Ahmed, D.S. Bernstein, Adaptive control of a dualaxis CMG with an unbalanced rotor, in: Decision and Control, 1998. Proceedings of the 37th IEEE Conference on, IEEE, 1998, pp. 4531-4536.
[16] A. Zaremba, An adaptive scheme with parameter identification for spacecraft attitude control, in: American Control Conference, 1997. Proceedings of the 1997, IEEE, 1997, pp. 552-556.
[17] H. Schaub, M.R. Akella, J.L. Junkins, Adaptive realization of linear closed-loop tracking dynamics in the presence of large system model errors, Journal of the Astronautical Sciences, 48(4) (2000) 537-552.
[18] M. Kabganian, M. Nabipour, F.F. Saberi, Modeling and laboratory verification of a three degree of freedom Gimbal simulator, in: 21st International Conference of Mechanical Engineering, Iran, 2013.
[19] M. Kabganian, M. Nabipour, F.F. Saberi, Design and verification of a controller for a remote sensing satelite by impementing on an attitude simuator, in: International Conference on Control, Instrumentation and Automation, Iran, 2013.
[20] M. Kabganian, M. Nabipour, F.F. Saberi, Design and implementation of attitude control algorithm of a satellite on a three-axis gimbal simulator, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(1) (2015) 72-86.
[21] M. Nabipour, M. Kabganian, F.F. Saberi, Designing a nonlinear attitude controller based on lyapunov theory and implementing in an attitude simulator, in: 22nd International Conference of Mechanical Engineering, Iran, 2014.
[22] D.M. Meissner, A three degrees of freedom testbed for nanosatellite and Cubesat attitude dynamics, determination, and control, NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2009.
[23] J.L. Schwartz, The distributed spacecraft attitude control system simulator: from design concept to decentralized control, Virginia Tech, 2004.
[24] C.W. Crowell, Development and analysis of a small satellite attitude determination and control system testbed, Massachusetts Institute of Technology, 2011.
[25] H. Yoon, Spacecraft attitude and power control using variable speed control moment gyros, Georgia Institute of Technology, 2004.
[26] J.-J.E. Slotine, W. Li, Applied nonlinear control, Prentice hall Englewood Cliffs, NJ, 1991.
[27] S. Ding, S. Li, Q. Li, Adaptive set stabilization of the attitude of a rigid spacecraft without angular velocity measurements, Journal of Systems Science and Complexity, 24(1) (2011) 105-119.
[28] J.J. Craig, Introduction to robotics: mechanics and control, Pearson/Prentice Hall Upper Saddle River, NJ, USA:, 2005.
[29] F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot manipulator control: theory and practice, CRC Press, 2003.