کنترل بهینه میکروصفحه متصل به انتهای میکرو تیر یک سر درگیر تحت تحریک الکترواستاتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه خوارزمی، تهران، ایران

چکیده

این مقاله، به طراحی کنترل کنندۀ بهینه برای میراسازی ارتعاشات یک مدل میکروسامانه تحت تحریک الکترواستاتیک غیرخطی می پردازد. هدف، استفاده از روشهای ممکن برای کاهش فراجهش بیشینه و زمان نشست در مدل کنترلی ارائه شده می باشد. این مدل از یک میکرو صفحه تحت تحریک الکترواستاتیک که به صورت ┴ شکل به انتهای میکروتیر یک سر درگیر
متصل شده، تشکیل شده است. نیروی الکترواستاتیک ناشی از اعمال ولتاژ الکتریکی بین میکروصفحه متصل به انتهای میکرو تیر و یک صفحه الکترود که مقابل آن قرار می گیرد، ایجاد می شود. در این مدل میکروتیر یک سر درگیر به صورت تیر پیوست های درنظرگرفته شده که از نظریۀ تیر اویلر برنولی پیروی می کند. مجموعۀ ┴ شکل متصل به انتهای تیر به صورت جسم صلب و نیروی الکترواستاتیک به صورت تابعی غیرخطی از جابه جایی و ولتاژ اعمالی بین میکروصفحه و الکترود مقابلش درنظرگرفته شده است. معادلات حرکت و شرایط مرزی آن با استفاده از قانون دوم نیوتن استخراج می شوند. جهت استخراج فضای حالت و کنترل حلقه بسته آن، معادلات با حل دقیق تبدیل به دو معادله دیفرانسیل معمولی گشته و حول نقطه کاری خط یسازی شده اند. معادلات حالت خطی شده توسط روش بهینه سازی تنظیم کننده خطی درجه دوم ( LQR ) به منظور کاهش مصرف انرژی و افزایش دقت بهینه سازی گشته اند. درنهایت میزان تأثیر و عملکرد روشهای کنترلی ارائه شده با مقایسه با مدل حلقه باز مورد ارزیابی قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Control of Electrostatically Actuated Micro-Plate Attached to the End of Microcantilever

نویسندگان [English]

  • H. Tourajizadeh
  • M. Kariman
  • M. Zamanian
  • B. Firouzi
Mechanical Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran
چکیده [English]

An optimal control is designed for damping the unwanted vibrations of an electrostatically
actuated micro-system. The goal is using feasible methods to decrease the settling time and overshoot
of the response. This configuration consists of an electro-statically actuated micro-plate attached to
the end of a micro-cantilever. The DC voltage is applied between the micro-plate and the opposite
electrode micro-plate. This DC voltage causes an electrostatic force. In this model micro-cantilever is
considered as a continuous medium for which Euler-Bernoulli beam theory can be implemented. The
plate is considered as a rigid body, and the electrostatic force is a nonlinear function of the displacement
and the applied voltage underneath the micro-plate. The equation of motion is derived using Newton’s
second law. In order to extract the corresponding state space and control the system in a closed loop
way, exact method is used to reduce related partial differential equation of the systems into a set of two
ordinary differential equations and the resultant state space is linearized about the operating point. The
linearized state space is then optimized using the linear-quadrant regulator. Efficiency and applicability
of the mentioned controller is investigated using comparative analyzing method.

کلیدواژه‌ها [English]

  • Optimal control
  • Electrostatic
  • Exact method
  • Euler-Bernoulli beam
  • Micro electromechanical systems
[1] P.B. Chu, S. Pister, Analysis of closed-loop control of parallel-plate electrostatic microgrippers, in: Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, IEEE, (1994) 820-825.
[2] L.J. Hornbeck, Current status and future applications for DMD-based projection displays, in: Proceedings of the Fifth  nternational Display Workshop IDW 98, Kobe,Japan, (1998).
[3] E.M. Abdel-Rahman, M.I. Younis, A.H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam, Journal of Micromechanics and Microengineering, 12(6) (2002)759.
[4] A.H. Nayfeh, M.I. Younis, E.M. Abdel-Rahman, Dynamic pull-in phenomenon in MEMS resonators,Nonlinear dynamics, 48(1-2) (2007) 153-163.
[5] S. Chaterjee, G. Pohit, A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams, Journal of sound and vibration, 322(4-5) (2009) 969-986.
[6] M.M. Abdalla, C.K. Reddy, W.F. Faris, Z. Gürdal, Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage, Computers & structures, 83(15-16) (2005) 1320-1329.
[7] M. Rasekh, S. Khadem, Pull-in analysis of an electrostatically actuated nano-cantilever beam with nonlinearity in curvature and inertia, International Journal of Mechanical Sciences, 53(2) (2011) 108-115.
[8] R.C. Batra, M. Porfiri, D. Spinello, Electromechanical model of electrically actuated narrow microbeams, Journal of Microelectromechanical systems, 15(5)(2006) 1175-1189.
[9] A. Khanchehgardan, G. Rezazadeh, A. Amiri, Damping Ratio in Micro-Beam Resonators Based on Magneto- Thermo-Elasticity, Journal of Solid Mechanics, 9(2)(2017) 249-262.
[10] E. Poloei, M. Zamanian, S. A. A. Hosseini, Static deflection and natural frequency analysis of two-layered electrostatically actuated microcantilever for finding the optimum configuration, Modares Mechanical Engineering, 15(5) (2015) 245-253, (In Persian).
[11] M. Joglekar, D. Pawaskar, Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation, Microsystem technologies, 17(1) (2011)35-45.
[12] M. Joglekar, D. Pawaskar, Shape optimization of electrostatically actuated microbeams for extending static and dynamic operating ranges, Structural and Multidisciplinary Optimization, 46(6) (2012) 871-890.
[13] H.M. Sedighi, K.H. Shirazi, Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method, Acta Astronautica, 85 (2013) 19-24.
[14] M.-T. Boudjiet, J. Bertrand, F. Mathieu, L. Nicu, L. Mazenq, T. Leïchlé, S.M. Heinrich, C. Pellet, I.Dufour, Geometry optimization of uncoated silicon microcantilever-based gas density sensors, Sensors and Actuators B: Chemical, 208 (2015) 600-607.
[15] H. Rokni, A.S. Milani, R.J. Seethaler, Size-dependent vibration behavior of functionally graded CNT-reinforced polymer microcantilevers: modeling and optimization, European Journal of Mechanics-A/Solids, 49 (2015) 26-34.
[16] S. Kong, Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory, Applied Mathematical Modelling, 37(12-13) (2013) 7481-7488.
[17] F. Mokhtari-Nezhad, A. Saidi, S. Ziaei-Rad, Influence of the tip mass and position on the AFM cantilever dynamics: Coupling between bending, torsion and flexural modes, Ultramicroscopy, 109(9) (2009) 1193- 1202.
[18] A.F. Payam, M. Fathipour, Effect of tip mass on modal flexural sensitivity of rectangular AFM cantilevers to surface stiffness variations, Arabian Journal for Science and Engineering, 39(2) (2014) 1393-1397.
[19] P. Kim, S. Bae, J. Seok, Resonant behaviors of a nonlinear cantilever beam with tip mass subject to an axial force and electrostatic excitation, International Journal of Mechanical Sciences, 64(1) (2012) 232-257.
[20] F.M. Alsaleem, M.I. Younis, H.M. Ouakad, On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators, Journal of Micromechanics and Microengineering, 19(4) (2009)045013.
[21] A. Nayfeh, H. Ouakad, F. Najar, S. Choura, E. Abdel-Rahman, Nonlinear dynamics of a resonant gas sensor,Nonlinear Dynamics, 59(4) (2010) 607-618.
[22] M. Zamanian, A. Karimiyan, Analysis of the mechanical behavior of a doubled microbeam configuration under electrostatic actuation, International Journal of Mechanical Sciences, 93 (2015) 82-92.
[23] B. Firouzi, M. Zamanian, S. Hosseini, Static and dynamic responses of a microcantilever with a T-shaped tip mass to an electrostatic actuation, Acta Mechanica Sinica, 32(6) (2016) 1104-1122.
[24] M. Mojahedi, M. Ahmadian, K. Firoozbakhsh, The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes, Composites Part B: Engineering,56 (2014) 336-343.
[25] D. Maithripala, J.M. Berg, W. Dayawansa, Control of an electrostatic microelectromechanical system using static and dynamic output feedback, Journal of Dynamic Systems, Measurement, and Control, 127(3) (2005) 443-450.
[26] M. Karkoub, M. Zribi, Robust control of an electrostatic microelectromechanical actuator, Open Mechanics Journal, 2 (2008) 12-20.
[27] J.I. Seeger, B.E. Boser, Dynamics and control of parallelplate actuators beyond the electrostatic instability, in:Transducers, (1999) 474-477.
[28] G. Liu, K. Dai, K. Lim, Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using the radial point interpolation method, Smart materials and structures, 13(6) (2004) 1438.
[29] H. Ouakad, A. Nayfeh, S. Choura, E. Abdel-Rahman, F. Najar, B. Hammad, Nonlinear feedback control and dynamics of an electrostatically actuated microbeam filter, in: ASME 2008 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2008, pp. 535-542.
[30] R. Vatankhah, F. Karami, H. Salarieh, A. Alasty, Stabilization of a vibrating non-classical microcantilever using electrostatic actuation, Scientia Iranica.Transaction B, Mechanical Engineering, 20(6) (2013)1824.
[31] K. Yagasaki, Nonlinear dynamics and bifurcations in external feedback control of microcantilevers in atomic force microscopy, Communications in Nonlinear Science and Numerical Simulation, 18(10) (2013) 2926-2943.
[32] R. Vatankhah, A. Najafi, H. Salarieh, A. Alasty, Boundary stabilization of non-classical micro-scale beams, Applied Mathematical Modelling, 37(20-21)(2013) 8709-8724.
[33] R. Vatankhah, A. Najafi, H. Salarieh, A. Alasty, Exact boundary controllability of vibrating non-classical Euler–Bernoulli micro-scale beams, Journal of Mathematical Analysis and Applications, 418(2) (2014) 985-997.
[34] R. Vatankhah, F. Karami, H. Salarieh, Observer-based vibration control of non-classical microcantilevers using extended Kalman filters, Applied Mathematical Modelling, 39(19) (2015) 5986-5996.
[35] B. Pratiher, Stability and bifurcation analysis of an electrostatically controlled highly deformable microcantilever-based resonator, Nonlinear Dynamics,78(3) (2014) 1781-1800.
[36] A.H. Nayfeh, W. Lacarbonara, On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities, Nonlinear Dynamics, 13(3) (1997) 203-220.
[37] A. Bacciotti, L. Rosier, Liapunov functions and stability in control theory, Springer Science & Business Media,(2006).
[38] R.C. Dorf, R.H. Bishop, Modern control systems, Pearson, (2011).
[39] B.D. Anderson, J.B. Moore, Optimal control: linear quadratic methods, Courier Corporation, (2007).
[40] F. Lin, Robust control design: an optimal control approach, John Wiley & Sons, (2007).