[1] P.B. Chu, S. Pister, Analysis of closed-loop control of parallel-plate electrostatic microgrippers, in: Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, IEEE, (1994) 820-825.
[2] L.J. Hornbeck, Current status and future applications for DMD-based projection displays, in: Proceedings of the Fifth nternational Display Workshop IDW ‘98, Kobe,Japan, (1998).
[3] E.M. Abdel-Rahman, M.I. Younis, A.H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam, Journal of Micromechanics and Microengineering, 12(6) (2002)759.
[4] A.H. Nayfeh, M.I. Younis, E.M. Abdel-Rahman, Dynamic pull-in phenomenon in MEMS resonators,Nonlinear dynamics, 48(1-2) (2007) 153-163.
[5] S. Chaterjee, G. Pohit, A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams, Journal of sound and vibration, 322(4-5) (2009) 969-986.
[6] M.M. Abdalla, C.K. Reddy, W.F. Faris, Z. Gürdal, Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage, Computers & structures, 83(15-16) (2005) 1320-1329.
[7] M. Rasekh, S. Khadem, Pull-in analysis of an electrostatically actuated nano-cantilever beam with nonlinearity in curvature and inertia, International Journal of Mechanical Sciences, 53(2) (2011) 108-115.
[8] R.C. Batra, M. Porfiri, D. Spinello, Electromechanical model of electrically actuated narrow microbeams, Journal of Microelectromechanical systems, 15(5)(2006) 1175-1189.
[9] A. Khanchehgardan, G. Rezazadeh, A. Amiri, Damping Ratio in Micro-Beam Resonators Based on Magneto- Thermo-Elasticity, Journal of Solid Mechanics, 9(2)(2017) 249-262.
[10] E. Poloei, M. Zamanian, S. A. A. Hosseini, Static deflection and natural frequency analysis of two-layered electrostatically actuated microcantilever for finding the optimum configuration, Modares Mechanical Engineering, 15(5) (2015) 245-253, (In Persian).
[11] M. Joglekar, D. Pawaskar, Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation, Microsystem technologies, 17(1) (2011)35-45.
[12] M. Joglekar, D. Pawaskar, Shape optimization of electrostatically actuated microbeams for extending static and dynamic operating ranges, Structural and Multidisciplinary Optimization, 46(6) (2012) 871-890.
[13] H.M. Sedighi, K.H. Shirazi, Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method, Acta Astronautica, 85 (2013) 19-24.
[14] M.-T. Boudjiet, J. Bertrand, F. Mathieu, L. Nicu, L. Mazenq, T. Leïchlé, S.M. Heinrich, C. Pellet, I.Dufour, Geometry optimization of uncoated silicon microcantilever-based gas density sensors, Sensors and Actuators B: Chemical, 208 (2015) 600-607.
[15] H. Rokni, A.S. Milani, R.J. Seethaler, Size-dependent vibration behavior of functionally graded CNT-reinforced polymer microcantilevers: modeling and optimization, European Journal of Mechanics-A/Solids, 49 (2015) 26-34.
[16] S. Kong, Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory, Applied Mathematical Modelling, 37(12-13) (2013) 7481-7488.
[17] F. Mokhtari-Nezhad, A. Saidi, S. Ziaei-Rad, Influence of the tip mass and position on the AFM cantilever dynamics: Coupling between bending, torsion and flexural modes, Ultramicroscopy, 109(9) (2009) 1193- 1202.
[18] A.F. Payam, M. Fathipour, Effect of tip mass on modal flexural sensitivity of rectangular AFM cantilevers to surface stiffness variations, Arabian Journal for Science and Engineering, 39(2) (2014) 1393-1397.
[19] P. Kim, S. Bae, J. Seok, Resonant behaviors of a nonlinear cantilever beam with tip mass subject to an axial force and electrostatic excitation, International Journal of Mechanical Sciences, 64(1) (2012) 232-257.
[20] F.M. Alsaleem, M.I. Younis, H.M. Ouakad, On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators, Journal of Micromechanics and Microengineering, 19(4) (2009)045013.
[21] A. Nayfeh, H. Ouakad, F. Najar, S. Choura, E. Abdel-Rahman, Nonlinear dynamics of a resonant gas sensor,Nonlinear Dynamics, 59(4) (2010) 607-618.
[22] M. Zamanian, A. Karimiyan, Analysis of the mechanical behavior of a doubled microbeam configuration under electrostatic actuation, International Journal of Mechanical Sciences, 93 (2015) 82-92.
[23] B. Firouzi, M. Zamanian, S. Hosseini, Static and dynamic responses of a microcantilever with a T-shaped tip mass to an electrostatic actuation, Acta Mechanica Sinica, 32(6) (2016) 1104-1122.
[24] M. Mojahedi, M. Ahmadian, K. Firoozbakhsh, The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes, Composites Part B: Engineering,56 (2014) 336-343.
[25] D. Maithripala, J.M. Berg, W. Dayawansa, Control of an electrostatic microelectromechanical system using static and dynamic output feedback, Journal of Dynamic Systems, Measurement, and Control, 127(3) (2005) 443-450.
[26] M. Karkoub, M. Zribi, Robust control of an electrostatic microelectromechanical actuator, Open Mechanics Journal, 2 (2008) 12-20.
[27] J.I. Seeger, B.E. Boser, Dynamics and control of parallelplate actuators beyond the electrostatic instability, in:Transducers, (1999) 474-477.
[28] G. Liu, K. Dai, K. Lim, Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using the radial point interpolation method, Smart materials and structures, 13(6) (2004) 1438.
[29] H. Ouakad, A. Nayfeh, S. Choura, E. Abdel-Rahman, F. Najar, B. Hammad, Nonlinear feedback control and dynamics of an electrostatically actuated microbeam filter, in: ASME 2008 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2008, pp. 535-542.
[30] R. Vatankhah, F. Karami, H. Salarieh, A. Alasty, Stabilization of a vibrating non-classical microcantilever using electrostatic actuation, Scientia Iranica.Transaction B, Mechanical Engineering, 20(6) (2013)1824.
[31] K. Yagasaki, Nonlinear dynamics and bifurcations in external feedback control of microcantilevers in atomic force microscopy, Communications in Nonlinear Science and Numerical Simulation, 18(10) (2013) 2926-2943.
[32] R. Vatankhah, A. Najafi, H. Salarieh, A. Alasty, Boundary stabilization of non-classical micro-scale beams, Applied Mathematical Modelling, 37(20-21)(2013) 8709-8724.
[33] R. Vatankhah, A. Najafi, H. Salarieh, A. Alasty, Exact boundary controllability of vibrating non-classical Euler–Bernoulli micro-scale beams, Journal of Mathematical Analysis and Applications, 418(2) (2014) 985-997.
[34] R. Vatankhah, F. Karami, H. Salarieh, Observer-based vibration control of non-classical microcantilevers using extended Kalman filters, Applied Mathematical Modelling, 39(19) (2015) 5986-5996.
[35] B. Pratiher, Stability and bifurcation analysis of an electrostatically controlled highly deformable microcantilever-based resonator, Nonlinear Dynamics,78(3) (2014) 1781-1800.
[36] A.H. Nayfeh, W. Lacarbonara, On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities, Nonlinear Dynamics, 13(3) (1997) 203-220.
[37] A. Bacciotti, L. Rosier, Liapunov functions and stability in control theory, Springer Science & Business Media,(2006).
[38] R.C. Dorf, R.H. Bishop, Modern control systems, Pearson, (2011).
[39] B.D. Anderson, J.B. Moore, Optimal control: linear quadratic methods, Courier Corporation, (2007).
[40] F. Lin, Robust control design: an optimal control approach, John Wiley & Sons, (2007).