تحلیل غیرخطی پاسخ دینامیکی ورق کامپوزیتی فیبرکربنی بهبودیافته با نانولوله کربنی بر بستر الاستیک در محیط حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی مهندسی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران

چکیده

چکیده: در این مقاله، پاسخ دینامیکی غیرخطی ورق کامپوزیتی چندلایه تقویت شده با فیبر کربن و نانولوله‌های کربنی تحت بارگذاری مختلف مکانیکی و گرادیان حرارتی بر روی بستر الاستیک وینکلر-پسترناک مورد مطالعه قرار گرفته است. معادلات حاکم براساس نظریه برشی هایپربولیک معکوس و روابط غیرخطی کرنش ون کارمن استخراج شده و با استفاده از اجزا محدود حل می‌شود. نانولوله‌های کربن به صورت تصادفی و نامنظم در ماتریس پخش شده‌اند و خواص کامپوزیت سه فازی با ترکیبی از معادلات هالپین تسای و مدل میکرومکانیکی به صورت سلسله مراتبی به دست آمده است. تغییرات دما در راستای ضخامت ورق، یکنواخت، خطی و غیرخطی و چهار نوع بار ضرب های شامل نیم سینوسی، مثلثی، توانی ، پله‌ای و یکنواخت در نظر گرفته شده است. نتایج عددی نشان می‌دهد با افزودن نانولوله به کامپوزیت میزان خیز مرکز ورق کاهش پیدا می کند. کاهش خیز برای نانولوله‌های چند جداره مقدار کمتری نسبت به نانولوله‌های تک جداره دارد. همچنین مشاهده می‌شود که در محیط حرارتی افزایش تا % 1 وزنی نانولوله می‌تواند خیز مرکز ورق را کاهش دهد و پس از آن افزایش نانولوله تغییر قابل مشاهده‌ای برای خیز ورق دربرندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear Dynamic Response Analysis of Carbon Fiber Reinforced Polymer Enhanced with Carbon Nanotubes on Elastic Foundations in Thermal Environments

نویسندگان [English]

  • F. Ebrahimi
  • S. Habibi
Department of Mechanical Engineering, Imam Khomeini International University Qazvin, Iran
چکیده [English]

plates enhanced with carbon nanotubes resting on elastic foundations in thermal environments using the finite element method is investigated. The effective material properties of the multiscale composite are calculated using Halpin–Tsai equations and fiber micromechanics in the hierarchy. Three types of distribution of temperature through the thickness of the plate namely, uniform, linear, and nonlinear are considered. The governing equations are derived based on Inverse Hyperbolic Shear Deformation Theory and von Kármán geometrical nonlinearity. Five types of impulsive loads namely the step, sudden,
triangular, half-sine, and exponential pulses are considered. Numerical results reveal that the deflections of multi-phase composites significantly decrease with a small percentage of carbon nanotubes. Also, it is found that in thermal  nvironment, central deflection of the plate was reduced using a maximum of 1% of the carbon nanotube in polymer composites and adding higher weight percentage showed no significant change in the peaks of central deflection.

کلیدواژه‌ها [English]

  • Nonlinear dynamic response
  • Carbon nanotubes
  • Thermal environments
  • Hyperbolic shear deformation theory
[1] V. Sgobba, D.M. Guldi, Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics, Chemical society reviews, 38(1) (2009) 165-184.
[2] H.-S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, 91(1) (2009) 9-19.
[3] M. Yas, M. Heshmati, Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Applied Mathematical Modelling, 36(4) (2012) 1371-1394.
[4] M. Heshmati, M. Yas, Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads, Materials & Design, 49 (2013) 894-904.
[5] R. Moradi-Dastjerdi, M. Foroutan, A. Pourasghar, Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method, Materials & Design, 44 (2013) 256-266.
[6] H.-S. Shen, Y. Xiang, Nonlinear analysis of nanotubereinforced composite beams resting on elastic foundations in thermal environments, Engineering Structures, 56(2013) 698-708.
[7] R. Rafiee, R.M. Moghadam, Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling, Computational Materials Science, 63 (2012) 261-268.
[8] S. Khalili, A. Haghbin, Investigation on design parameters of single-walled carbon nanotube reinforced nanocomposites under impact loads, Composite Structures, 98 (2013) 253-260.
[9] Z.-X. Wang, H.-S. Shen, Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments, Nonlinear Dynamics, 70(1) (2012) 735-754.
[10] Z. Lei, L. Zhang, K. Liew, Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates, International Journal of Mechanical Sciences, 99 (2015)208-217.
[11] M. Kim, Y.-B. Park, O.I. Okoli, C. Zhang, Processing, characterization, and modeling of carbon nanotubereinforced multiscale composites, Composites Science and Technology, 69(3) (2009) 335-342.
[12] E. Bekyarova, E. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. Hahn, T.-W. Chou, M. Itkis, R. Haddon, Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites, Langmuir, 23(7) (2007) 3970-3974.
[13] M. Rafiee, X. Liu, X. He, S. Kitipornchai, Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates, Journal of Sound and Vibration, 333(14) (2014) 3236-3251.
[14] M. Rafiee, X. He, S. Mareishi, K. Liew, Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates, International Journal of Applied Mechanics, 6(03) (2014) 1450025.
[15] X. He, M. Rafiee, S. Mareishi, K. Liew, Large amplitude vibration of fractionally damped viscoelastic CNTs/ fiber/polymer multiscale composite beams, Composite Structures, 131 (2015) 1111-1123.
[16] G. Bhardwaj, A. Upadhyay, R. Pandey, K. Shukla, Non-linear flexural and dynamic response of CNT reinforced laminated composite plates, Composites Part B: Engineering, 45(1) (2013) 89-100.
[17] N. Hu, J. Qiu, Y. Li, C. Chang, S. Atobe, H. Fukunaga, Y. Liu, H. Ning, L. Wu, J. Li, Multi-scale numerical simulations of thermal expansion properties of CNTreinforced nanocomposites, Nanoscale research letters, 8(1) (2013) 1-8.
[18] H.-S. Shen, A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators, Composite Structures, 91(3) (2009) 375-384.
[19] A.M. Zenkour, The refined sinusoidal theory for FGM plates on elastic foundations, International journal of mechanical sciences, 51(11) (2009) 869-880.
[20] N. Grover, B. Singh, D. Maiti, New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates, AIAA journal, 51(8) (2013) 1861-1871.
[21] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, CRC press, 2004.
[22] R.-D. Chien, C.-S. Chen, Nonlinear vibration of laminated plates on an elastic foundation, Thin-walled structures, 44(8) (2006) 852-860.
[23] H.-S. Shen, J. Yang, L. Zhang, Dynamic response of Reissner–Mindlin plates under thermomechanical loading and resting on elastic foundations, Journal of Sound and Vibration, 232(2) (2000) 309-329.
[24] Y. Qu, S. Wu, H. Li, G. Meng, Three-dimensional free and transient vibration analysis of composite laminated and sandwich rectangular parallelepipeds: Beams, plates and solids, Composites Part B: Engineering, 73 (2015) 96-110.
[25] B. Zhang, Y. He, D. Liu, Z. Gan, L. Shen, A non-classical Mindlin plate finite element based on a modified couple stress theory, European Journal of Mechanics-A/Solids, 42 (2013) 63-80.
[26] Y. Zhang, X. Wang, Hygrothermal effects on interfacial stress transfer characteristics of carbon nanotubesreinforced composites system, Journal of reinforced plastics and composites, 25(1) (2006) 71-88.
[27] J. Zhu, Z. Taylor, O. Zienkiewicz, The finite element method: its basis and fundamentals, in, Butterworth- Heinemann Burlington, VT, 2005.
[28] M. Shariyat, F. Farzan, Nonlinear eccentric low-velocity impact analysis of a highly prestressed FGM rectangular plate, using a refined contact law, Archive of Applied Mechanics, 83(4) (2013) 623-641.
[29] T. Kant, J. Varaiya, C. Arora, Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes, Computers & Structures, 36(3) (1990) 401-420.