لنگش آزاد و اجباری محورهای حامل دیسک‌های نامیزان تحت اثر نیروی محوری

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران

چکیده

در این پژوهش معادلات حاکم بر لنگش آزاد و اجباری یک محور حامل تعداد دلخواه دیسک استخراج شده است. محور با استفاده از تئوری تیر تیموشنکو و افزودن اثرات ژیروسکوپی مدل سازی شده و دیسک‌‌ها به صورت اجرام متمرکز دارای اینرسی‌‌‌‌های انتقالی و دورانی در نظر گرفته شده‌‌اند. دو نوع گسترده و متمرکز از نیروی محوری نیز بر روی هر دیسک در نظر گرفته شده که تابعی از زمان بوده و محل نیروی متمرکز نیز نقطه ای دلخواه بر روی دیسک در نظر گرفته شده است. نیروی عرضی ناشی از نامیزانی جرم در دیسک‌‌ها و وزن کل مجموعه در تحلیل لنگش اجباری در نظر گرفته شده‌‌اند. در تحلیل لنگش اجباری، خیز استاتیکی محور به عنوان شرایط اولیه در نظر گرفته شده است و فرض بر آن است که سرعت دورانی محور از حالت سکون رفته رفته افزایش یافته تا در مدت زمان مشخص به مقدار نامی خود برسد. برای شرایط مرزی ساده در دو طرف محور و با استفاده از روش گالرکین لنگش آزاد محور بررسی شده و سپس با استفاده از روش‌‌‌‌های گالرکین و نیومارک- بتا، لنگش اجباری محور مورد تحلیل قرار گرفته است. در تحلیل لنگش آزاد فرکانس‌‌‌‌های پیشرو و پسرو و همچنین دیاگرام کمپبل برای محور رسم شده‌‌اند و در تحلیل لنگش اجباری نمودار تغییرات زمانی خیز، گشتاور خمشی و نیروی برشی در نقاط دلخواه از محور رسم شده‌‌اند. از نکات برجسته‌ی این تحقیق می‌توان به این مورد اشاره نمود که در مقایسه با تحلیل لنگش آزاد، لنگش اجباری محورها بسیار کم مورد توجه محققین قرار گرفته است که این مورد در این مقاله بررسی شده است. همچنین در نظر گرفتن سرعت زاویه ای متغیر با زمان، نیروی محوری متغیر با مکان و زمان و عدم وجود محدودیت در تعداد دیسک‌‌های موجود بر روی محور از دیگر نقاط برجسته‌ی این پژوهش می‌باشند؛ این موارد باعث شده‌اند که مساله‌ی بررسی شده هر چه بیشتر به آنچه در واقعیت رخ می‌دهد نزدیک‌تر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Free and Forced Whirling Analyses of Rotors with Multiple Unbalanced Discs Under Axial Force

نویسندگان [English]

  • M. R. Zeinolabedini
  • M. Rafeeyan
Department of Mechanical Engineering, Yazd University, Yazd, Iran
چکیده [English]

In this paper the set of equation for free and forced whirling analyses of rotors with any number of discs is derived. By considering gyroscopic effects, the rotor is modeled based on the Timoshenko beam theory and discs are considered as concentrated elements having both translational and rotational inertias. At the position of each disc, the rotor is imposed to distributed and concentrated axial forces which vary versus time. Also, transverse load composed of unbalanced masses and total weight of the system is considered. For forced whirling analysis, static deflection of the rotor is considered as the initial conditions and rotational speed of the rotor is considered as a time variable parameter which increases from zero to its nominal value in a limited period of time. For a simply supported rotor, the free whirling analysis is investigated using Galerkin method and using Galerkin and Newmark-beta methods, the forced whirling analysis is studied numerically. Forward and backward frequencies and Campbell diagrams are presented in free whirling analysis and variation of deflection, bending moment and shear force in any point of the rotor are depicted versus time in forced whirling analysis. The most advantages of the presented paper are consideration of time-dependency of rotating speed in forced whirling analysis and its applicability for rotors with any number of mounted discs.

کلیدواژه‌ها [English]

  • Whirling
  • Rotor
  • Axial force
  • Unbalanced disc
[1] G. Genta, Dynamics of rotating systems, Springer Science & Business Media, 2007.
[2] R. Grybos, The effect of shear and rotary inertia of a rotor at its critical speeds, Archive of applied mechanics, 61(2)(1991) 104-109
[3] S. Choi, C. Pierre, A. Ulsoy, Consistent modeling of rotating Timoshenko shafts subject to axial loads, Journal of vibration and acoustics, 114(2) (1992) 249-259.
[4] Y.-G. Jei, C.-W. Lee, Modal analysis of continuous asymmetrical rotor-bearing systems, Journal of Sound and Vibration, 152(2) (1992) 245-262.
[5] F. Sturla, A. Argento, Free and forced vibrations of a spinning viscoelastic beam, Journal of vibration and acoustics, 118(3) (1996) 463-468.
[6] O. Jun, J. Kim, Free bending vibration of a multi-steprotor, Journal of sound and vibration, 224(4) (1999) 625- 642.
[7] S. Karunendiran, J. Zu, Free vibration analysis of shafts on resilient bearings using Timoshenko beam theory, Journal of vibration and acoustics, 121(2) (1999) 256-258.
[8] N. Shabaneh, J.W. Zu, Dynamic analysis of rotor–shaft systems with viscoelastically supported bearings, Mechanism and machine theory, 35(9) (2000) 1313-1330.
[9] F.A. Raffa, F. Vatta, Equations of motion of an asymmetric Timoshenko shaft, Meccanica, 36(2) (2001) 201-211.
[10] U. Gu, C. Cheng, Vibration analysis of a high-speed spindle under the action of a moving mass, Journal of sound and vibration, 278(4-5) (2004) 1131-1146.
[11] G. Sheu, S.-M. Yang, Dynamic analysis of a spinning Rayleigh beam, International Journal of Mechanical Sciences, 47(2) (2005) 157-169.
[12] H. Afshari, M. Irani, K. Torabi, Free whirling analysis of multi-step Timoshenko rotor with multiple bearing using DQEM, Modares Mechanical Engineering, 14(10)(2014) 109-120.
[13] M. Irani, A. Mohebbi, H. Afshari, Longitudinal-Torsional and Two Plane Transverse Vibrations of a Composite Timoshenko Rotor, Journal of Solid Mechanics, 8(2) (2016) 418-434.
[14] K. Torabi, H. Afshari, H. Najafi, Whirling analysis of axial-loaded multi-step Timoshenko rotor carrying concentrated masses, Journal of solid mechanics, 9(1) (2017) 138-156.
[15] I. Chatzisavvas, A. Boyaci, P. Koutsovasilis, B.Schweizer, Influence of hydrodynamic thrust bearings on the nonlinear oscillations of high-speed rotors, Journal of Sound and Vibration, 380 (2016) 224-241.
[16] D. Gayen, D. Chakraborty, R. Tiwari, Whirl frequencies and critical speeds of a rotor-bearing system with a cracked functionally graded shaft–Finite element analysis, European Journal of Mechanics-A/Solids, 61 (2017) 47-58.
[17] H. Roy, S. Chandraker, J. Dutt, T. Roy, Dynamics of multilayer, multidisc viscoelastic rotor–An operator based higher order classical model, Journal of Sound and Vibration, 369 (2016) 87-108.
[18] H. Roy, J. Dutt, Dynamics of polymer and polymer composite rotors–An operator based finite element approach, Applied Mathematical Modelling, 40(3)(2016) 1754-1768.
[19] S. Ganguly, A. Nandi, S. Neogy, A state space viscoelastic shaft finite element for analysis of rotors, Procedia Engineering, 144 (2016) 374-381.
[20] T. Kaneko, On Timoshenko's correction for shear in vibrating beams, Journal of Physics D: Applied Physics, 8(16) (1975) 1927.
[21] N.M. Newmark, A method of computation for structural dynamics, Journal of the engineering mechanics division, 85(3) (1959) 67-94.