[1] J.C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philosophical Transactions of the royal society of London, 170 (1879) 231-256.
[2] W.-M. Zhang, G. Meng, X. Wei, A review on slip models for gas microflows, Microfluidics and nanofluidics,13(6) (2012) 845-882.
[3] J. Sun, Z.-X. Li, Effect of gas adsorption on momentum accommodation coefficients in microgas flows using molecular dynamic simulations, Molecular Physics,106(19) (2008) 2325-2332.
[4] H. Yan, W.-M. Zhang, Z.-K. Peng, G. Meng, Effect of random surface topography on the gaseous flow in microtubes with an extended slip model, Microfluidics and Nanofluidics, 18(5-6) (2015) 897-910.
[5] H. Yamaguchi, T. Hanawa, O. Yamamoto, Y. Matsuda, Y. Egami, T. Niimi, Experimental measurement on tangential momentum accommodation coefficient in a single microtube, Microfluidics and nanofluidics, 11(1)(2011) 57-64.
[6] E.B. Arkilic, K.S. Breuer, M.A. Schmidt, Mass flow and tangential momentum accommodation in silicon micromachined channels, Journal of fluid mechanics,437 (2001) 29-43.
[7] J. Maurer, P. Tabeling, P. Joseph, H. Willaime, Secondorder slip laws in microchannels for helium and nitrogen, Physics of Fluids, 15(9) (2003) 2613-2621.
[8] S. Colin, P. Lalonde, R. Caen, Validation of a secondorder slip flow model in rectangular microchannels, Heat transfer ngineering, 25(3) (2004) 23-30.
[9] T. Ewart, P. Perrier, I. Graur, J.G. Méolans, Tangential momemtum accommodation in microtube, Microfluidics and Nanofluidics, 3(6) (2007) 689-695.
[10] B.-Y. Cao, M. Chen, Z.-Y. Guo, Temperature dependence of the tangential momentum accommodation coefficient for gases, Applied Physics Letters, 86(9)(2005) 091905.
[11] G. Bird, Molecular gas dynamics and the direct simulation monte carlo of gas flows, Clarendon, Oxford, 508 (1994) 128.
[12] V. Kovalev, A. Yakunchikov, F. Li, Tangential momentum and thermal accommodation coefficients for hydrogen molecules on graphite surface, Acta Astronautica, 69(7) (2011) 744-746.
[13] M. Gallis, J. Torczynski, Direct simulation Monte Carlo-based expressions for the gas mass flow rate and pressure profile in a microscale tube, Physics of Fluids,24(1) (2012) 012005.
[14] M. Sbragaglia, S. Succi, Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions, Physics of Fluids, 17(9) (2005) 093602.
[15] A. Homayoon, A.M. Isfahani, E. Shirani, M.Ashrafizadeh, A novel modified lattice Boltzmann method for simulation of gas flows in wide range of Knudsen number, International Communications in Heat and Mass Transfer, 38(6) (2011) 827-832.
[16] Z. Guo, B. Shi, T. Zhao, C. Zheng, Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows, Physical Review E,76(5) (2007) 056704.
[17] Z. Chai, Z. Guo, L. Zheng, B. Shi, Lattice Boltzmann simulation of surface roughness effect on gaseous flow in a microchannel, Journal of Applied Physics, 104(1)(2008) 014902.
[18] A.A. Mohamad, Lattice Boltzmann method: fundamentals and engineering applications with computer codes, Springer Science & Business Media,2011.
[19] Q. Zou, X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Physics of fluids, 9(6) (1997) 1591-1598.
[20] X. He, Q. Zou, L.-S. Luo, M. Dembo, Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, Journal of Statistical Physics, 87(1) (1997) 115-136.
[21] F. Verhaeghe, L.-S. Luo, B. Blanpain, Lattice Boltzmann modeling of microchannel flow in slip flow regime, Journal of omputational Physics, 228(1)(2009) 147-157.
[22] Y. Ji, K. Yuan, J. Chung, Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel, International Journal of Heat and Mass Transfer, 49(7) (2006) 1329-1339.
[23] A. Beskok, G.E. Karniadakis, Report: a model for flows in channels, pipes, and ducts at micro and nano scales, Microscale hermophysical Engineering, 3(1)(1999) 43-77.