بررسی تأثیر مدل دینامیکی سرعت القایی روتور اصلی بر پاسخ‌های دینامیکی بالگرد

نوع مقاله : مقاله پژوهشی

نویسندگان

مجتمع دانشگاهی مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

در این مقاله پاسخ‌های دینامیکی مستقیم و غیر مستقیم بالگرد با استفاده از مدل دینامیکی سرعت القایی روتور اصلی بررسی می‌شود. مدل دینامیکی سرعت القایی، یک مدل متشکل از حاصل‌ضرب یک‌چند جمله‌ای لژاندر کانونی در یک تابع مثلثاتی با تعداد هارمونیک دلخواه و با ضرایب وابسته به زمان است. علت انتخاب ‌‌این مدل تطابق آن با جواب‌های کلی معادله دیفرانسیل پاره‌ای لاپلاس فشار در دستگاه مختصات بیضوی برای جریان تراکم‌ناپذیر است که پیشتر با استفاده از روش جداسازی متغیرها و اعمال شرط گسستگی فشار درسطح روتور اصلی و فرض جریان استوانه‌ای در هم تنیده در پایین‌دست روتور اصلی محاسبه گردید. اما نوآوری ‌‌این تحقیق در انتخاب ‌‌این مدل دینامیکی برای محاسبه سرعت القایی و الصاق آن به سایر معادلات دینامیکی شش درجه آزادی بالگرد (بدنه صلب، روتور اصلی با پره‌های الاستیک، روتور دم، دم افقی و عمودی) بدون نیاز به گسسته‌سازی روابط در حوزه زمان است. با استفاده از ‌‌این مدل امکان محاسبه نیروها و گشتاورهای ‌‌آیرودینامیک پره‌های روتور اصلی بدون نیاز به روابط پپچیده ‌آیرودینامیک غیردائم میسر می‌شود. علاوه بر‌‌ این، جلوگیری از تکیدگی جواب‌ها در فواصل مکانی مشخص از روتور اصلی از دیگر نقاط قوت‌‌ این مدل دینامیکی است. نتایج حاصل از شبیه‌سازی دینامیکی بالگرد با استفاده از مدل دینامیکی مذکور با فرض چند جمله‌ای درجه شش و تابع مثلثاتی با چهار هارمونیک که منجر به 28 معادله دیفرانسیل مرتبه اول شد در مقایسه با نتایج تست پرواز موجود متضمن بهبود کیفی و کمّی در پیش‌بینی پاسخ‌های دینامیکی مستقیم و غیر مستقیم بالگرد در پرواز کروز است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Examination of Helicopter Dynamic Response Using Dynamic Inflow Model

نویسندگان [English]

  • F. Shahmiri
  • Y. Sarafraz
Aerospace Department, Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

This paper concerned with the examination of on-axis and off-axis dynamic responses of helicopters using a dynamic induced velocity model for a main rotor. The model consisted a canonical Legendry polynomial and a trigonometric function with a time dependent coefficients and arbitrary harmonics. The main reason for this, was the compatibility of the Legendry polynomial with the potential acceleration function presented by Laplace PDE for a main rotor at incompressible flow condition in elliptical coordinate system. The Laplace equation was previously solved through the separation of variables with discontinuity of pressure over the rotor disc and cylindrical skewed wake below the rotor. The novel of the present research is the inflow dynamics with finite state wake that was efficiently adopted with the dynamic equations of single main rotor helicopters (rigid fuselage, elastic main rotor, horizontal and vertical tail) in the time domain. Therefore, the discretization of the wake inflow was avoided by the definition of finite inflow states. Furthermore, the possibility of air load computations is achieved through the state formulation and quasi steady aerodynamic implementation. Moreover, the singularity problem associated with the traditional inflow dynamics was avoided through the current inflow state. The obtained results showed that using dynamic inflow model with 28-state and 4- harmonics significantly improves the off-axis dynamic responses of single main rotor helicopters. Comparison of the obtained results with the flight-test data and with the other dynamic inflow models showed that both the off-axis and on-axis response of helicopters experience a fairy good improvements.

کلیدواژه‌ها [English]

  • Helicopter
  • Main rotor
  • Dynamic induced velocity
  • Dynamic simulation
[1] J. H. Zhao, Dynamic Wake Distortion Model for Helicopter Maneuvering Flight, Ph.D. thesis, School of Aerospace Engineering,  Georgia Institute of Technology,Atlanta, Georgia (2005).
[2] J. Zhao, J. V. R. Prasad, D. A. Peters Rotor Dynamic Wake Distortion Model for Helicopter Maneuvering Flight, Journal of the American Helicopter Society, 49(4)(2004) 414–424.
[3] M. Ribera, R. Celi, Time Marching Simulation Modeling in Axial Descending Flight Through the Vortex Ring State, Proceedings of the 63rd Annual Forum of the American Helicopter Society, Virginia Beach, VA.(2007).
[4] D. Fusato, R. Celi, Multidisciplinary Design Optimization for Helicopter Aeromechanics and Handling Qualities, Journal of Aircraft, 43(1) (2006) 241-252.
[5] M. Ribera, M., R. Celi, Simulation Modeling in Steady Turning Flight with Refined Aerodynamic, Proceedings of the 31st European Rotorcraft Forum, Firenze, Italy (2005).
[6] J. G. Leishman, Indicial Lift Approximations for Two–Dimensional Subsonic Flow as Obtained from Oscillatory Measurements, Journal of Aircraft, 30(3)(2003) 340–351.
[7] H. Lomax, H., M. A.Heaslet, F. B. Fuller, L. Sluder, Two and Three Dimensional Unsteady Lift Problems in High Speed Flight, NACA Report 1077 (1988).
[8] F. Shahmiri, F. Saghafi, Improvement of Dynamic Response Prediction of Helicopters, Journal of Aircraft Engineering and Aerospace Technology, 79(76) (2007)579-592.
[9] D. M. Pitt, D.A. Peters, (1981),Theoretical Prediction of Dynamic Inflow Derivatives, Vertica, 5(1) (1981) 21-34.
[10] M. Gennaretti, R. Gori, J. Serafini, G. Bernardini, and F. Cardito, Rotor Dynamic Wake Inflow Finite State Modelling, 33rd AIAA Applied Aerodynamics Conference, Dallas (2015).
[11] J. Serafini, M. Molica Colella, and M. Gennaretti,, A finite-state aeroelastic model for rotorcraft-pilot coupling analysis, CEAS Aeronautical Journal, (2013) 1–11.
[12] R. Gori, F. Pausilli, M. D. Pavel, State-space rotor aeroelastic modeling for real-time helicopter flight simulation,” Advanced Material Research, 10(16) (2014)451–459.
[13] Zhao, Jinggen, He, Chengjian, A Finite State Dynamic Wake Model Enhanced with Vortex Particle Method–Derived Modeling Parameters for Coaxial Rotor Simulation and Analysis, 61(2)(2016) 1-9.
[14] M. G. Ballin, M. A. Dalang-Secretan, Validation of the Dynamic Response of a Blade-Element UH-60 Simulation Model in Hovering Fligh, Proceedings of the American Helicopter Society 46th Annual Forum, Washington D.C. (1990).
[15] F. Shahmiri, fundamental of helicopter flight mechanics, Pishro Ghaed Publication, (1) (1391) (In Persian).