[1] P. Kim, C.M. Lieber, Nanotube nanotweezers, Science, 286(5447) (1999) 2148-2150.
[2] G.-W. Wang, Y. Zhang, Y.-P. Zhao, G.-T. Yang, Pull-in instability study of carbon nanotube tweezers under the influence of van der Waals forces, Journal of Micromechanics Microengineering, 14(8) (2004) 1119.
[3] G.-W. Wang, Y.-P. Zhao, G.-T. Yang, The stability of a vertical single-walled carbon nanotube under its own weight, Materials design, 25(6) (2004) 453-457.
[4] C.K. Adu, G.U. Sumanasekera, B.K. Pradhan, H.E. Romero, P.C. Eklund, Carbon nanotubes: a thermoelectric nano-nose, Chemical Physics Letters, 337(1-3) (2001) 31-35.
[5] P.G. Collins, K. Bradley, M. Ishigami, d.A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, science, 287(5459) (2000) 1801-1804.
[6] J. Arcamone, G. Rius, G. Abadal, J. Teva, N. Barniol, F. Pérez-Murano, Micro/nanomechanical resonators for distributed mass sensing with capacitive detection, Microelectronic Engineering, 83(4-9) (2006) 1216-1220.
[7] M. Dequesnes, Z. Tang, N. Aluru, Static and dynamic analysis of carbon nanotube-based switches, Journal of engineering materials technology, 126(3) (2004) 230-237.
[8] C.-H. Ke, N. Pugno, B. Peng, H. Espinosa, Experiments and modeling of carbon nanotube-based NEMS devices, Journal of the Mechanics Physics of Solids, 53(6) (2005) 1314-1333.
[9] T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing, science, 289(5476) (2000) 94-97.
[10] C. Li, E.T. Thostenson, T.-W. Chou, Sensors and actuators based on carbon nanotubes and their composites: a review, Composites science technology, 68(6) (2008) 1227-1249.
[11] J. Qian, Y.-P. Zhao, Materials selection in mechanical design for microsensors and microactuators, Materials design, 23(7) (2002) 619-625.
[12] S.D. Senturia, Microsystem design, Springer Science & Business Media, 2007.
[13] M. Pedersen, W. Olthuis, P. Bergveld, A silicon condenser microphone with polyimide diaphragm and backplate, Sensors Actuators A: Physical, 63(2) (1997) 97-104.
[14] M. Pederson, W. Olthuis, P. Bergveld, High-performance condenser microphone with fully integrated CMOS amplifier and DC-DC voltage converter, Journal of microelectromechanical systems, 7(4) (1998) 387-394.
[15] J.-J. Ho, Y.-K. Fang, M. Hsieh, S. Ting, G.-S. Chen, M.-S. Ju, T.Y. Chen, C. Huang, C. Chen, Development of a microelectromechanical system pressure sensor for rehabilitation engineering applications, International Journal of electronics, 87(6) (2000) 757-767.
[16] J.-M. Sallese, W. Grabinski, V. Meyer, C. Bassin, P. Fazan, Electrical modeling of a pressure sensor MOSFET, Sensors Actuators A: Physical, 94(1-2) (2001) 53-58.
[17] K. Chik, Precision wavelength light sources for dense WDM system, in: High-Speed Semiconductor Lasers for Communication, International Society for Optics and Photonics, 1997, pp. 56-60.
[18] L. Jiang, Y. Shi, W. Li, Y. Ding, Z. Lai, Z. Zhu, Numerical analysis of pull-in voltage for contact MEMS switches in switched-line phase shifter application, in: Fifth International Conference on Thin Film Physics and Applications, International Society for Optics and Photonics, 2004, pp. 587-591.
[19] R. Batra, M. Porfiri, D. Spinello, Review of modeling electrostatically actuated microelectromechanical systems, Smart Materials Structures, 16(6) (2007) R23.
[20] R. Nadal-Guardia, A.M. Brosa, A. Dehe, AC transfer function of electrostatic capacitive sensors based on the 1-D equivalent model: application to silicon microphones, Journal of microelectromechanical systems, 12(6) (2003) 972-978.
[21] R. Nadal-Guardia, A.M. Brosa, A. Dehé, Constant charge operation of capacitor sensors based on switched-current circuits, IEEE sensors journal, 3(6) (2003) 835-842.
[22] J. Cheng, J. Zhe, X. Wu, Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators, Journal of Micromechanics Microengineering, 14(1) (2003) 57.
[23] A.G. Arani, A. Jalilvand, M. Ghaffari, M.T. Mazraehshahi, R. Kolahchi, M. Roudbaria, S. Amira, Nonlinear pull-in instability of boron nitride nano-switches considering electrostatic and Casimir forces, Scientia Iranica. Transaction F, Nanotechnology, 21(3) (2014) 1183.
[24] M.I. Younis, E.M. Abdel-Rahman, A. Nayfeh, A reduced-order model for electrically actuated microbeam-based MEMS, Journal of Microelectromechanical systems, 12(5) (2003) 672-680.
[25] G.W. Vogl, A.H. Nayfeh, A reduced-order model for electrically actuated clamped circular plates, in: ASME 2003 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, 2003, pp. 1867-1874.
[26] R. Batra, M. Porfiri, D. Spinello, Capacitance estimate for electrostatically actuated narrow microbeams, IET Micro Nano Letters, 1(2) (2006) 71-73.
[27] E. Huang, S. Senturia, Generating efficient dynamics models for microelectromechanical systems from a few finite-element simulations runs, J. Microelectromech. Syst, 8 (1999) 280-289.
[28] E. Yazdanpanahi, A. Noghrehabadi, M. Ghalambaz, Pull-in instability of electrostatic doubly clamped nano actuators: Introduction of a balanced liquid layer (BLL), International Journal of Non-Linear Mechanics, 58 (2014) 128-138.
[29] G.N. Nielson, G. Barbastathis, Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators, Journal of microelectromechanical systems, 15(4) (2006) 811-821.
[30] D. Elata, H. Bamberger, On the dynamic pull-in of electrostatic actuators with multiple degrees of freedom and multiple voltage sources, Journal of Microelectromechanical systems, 15(1) (2006) 131-140.
[31] H.C. Nathanson, W.E. Newell, R.A. Wickstrom, J.R. Davis, The resonant gate transistor, IEEE Transactions on Electron Devices, 14(3) (1967) 117-133.
[32] S. Chaterjee, G. Pohit, A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams, Journal of sound vibration, 322(4-5) (2009) 969-986.
[33] M.M. Zand, M.T. Ahmadian, Application of homotopy analysis method in studying dynamic pull-in instability of microsystems, Mechanics Research Communications, 36(7) (2009) 851-858.
[34] J. Yang, Y. Hu, S. Kitipornchai, Electro-dynamic behavior of an electrically actuated micro-beam: Effects of initial curvature and nonlinear deformation, Computers Structures, 96 (2012) 25-33.
[35] Y.-G. Wang, W.-H. Lin, Z.-J. Feng, X.-M. Li, Characterization of extensional multi-layer microbeams in pull-in phenomenon and vibrations, International Journal of Mechanical Sciences, 54(1) (2012) 225-233.
[36] Z. Wei, Y.-P. Zhao, Growth of liquid bridge in AFM, Journal of Physics D: Applied Physics, 40(14) (2007) 4368.
[37] P. Van Zwol, G. Palasantzas, J.T.M. De Hosson, Influence of roughness on capillary forces between hydrophilic surfaces, Physical Review E, 78(3) (2008) 031606.
[38] G. Palasantzas, Contact angle influence on the pull-in voltage of microswitches in the presence of capillary and quantum vacuum effects, Journal of Applied Physics, 101(5) (2007) 053512.
[39] C. Mastrangelo, C. Hsu, Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments, Journal of Microelectromechanical systems, 2(1) (1993) 44-55.
[40] H.M. Ouakad, M.I. Younis, Modeling and simulations of collapse instabilities of microbeams due to capillary forces, in: ASME 2008 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2008, pp. 187-195.
[41] E. Yazdanpanahi, A. Noghrehabadi, M. Ghalambaz, Balance dielectric layer for micro electrostatic switches in the presence of capillary effect, International Journal of Mechanical Sciences, 74 (2013) 83-90.
[42] M. Asghari, M. Ahmadian, M. Kahrobaiyan, M. Rahaeifard, On the size-dependent behavior of functionally graded micro-beams, Materials Design, 31(5) (2010) 2324-2329.
[43] S. Park, X. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics Microengineering, 16(11) (2006) 2355.
[44] Y. Fu, J. Zhang, Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies, Applied Mathematical Modelling, 35(2) (2011) 941-951.
[45] S. Kong, S. Zhou, Z. Nie, K. Wang, The size-dependent natural frequency of Bernoulli–Euler micro-beams, International Journal of Engineering Science, 46(5) (2008) 427-437.
[46] F. Yang, A. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids Structures, 39(10) (2002) 2731-2743.
[47] J. Reddy, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45(2-8) (2007) 288-307.
[48] A.C. Eringen, Nonlocal continuum field theories, Springer Science & Business Media, 2002.
[49] J. Abdi, A. Koochi, A. Kazemi, M. Abadyan, Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory, Smart Materials Structures, 20(5) (2011) 055011.
[50] D.C. Lam, A.C. Chong, Indentation model and strain gradient plasticity law for glassy polymers, Journal of materials research, 14(9) (1999) 3784-3788.
[51] M. Rahaeifard, M. Kahrobaiyan, M. Asghari, M. Ahmadian, Static pull-in analysis of microcantilevers based on the modified couple stress theory, Sensors Actuators A: Physical, 171(2) (2011) 370-374.
[52] J. Yang, X. Jia, S. Kitipornchai, Pull-in instability of nano-switches using nonlocal elasticity theory, Journal of Physics D: Applied Physics, 41(3) (2008) 035103.
[53] Y.T. Beni, A. Koochi, M. Abadyan, Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS, Physica E: Low-dimensional Systems Nanostructures, 43(4) (2011) 979-988.
[54] M. Rahaeifard, M. Kahrobaiyan, M. Ahmadian, K. Firoozbakhsh, Size-dependent pull-in phenomena in nonlinear microbridges, International Journal of Mechanical Sciences, 54(1) (2012) 306-310.
[55] A.G. Arani, M. Ghaffari, A. Jalilvand, R. Kolahchi, Nonlinear nonlocal pull-in instability of boron nitride nanoswitches, Acta Mechanica, 224(12) (2013) 3005-3019.
[56] S. Pamidighantam, R. Puers, K. Baert, H.A. Tilmans, Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions, Journal of Micromechanics Microengineering, 12(4) (2002) 458.
[57] E.M. Abdel-Rahman, M.I. Younis, A.H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam, Journal of Micromechanics Microengineering, 12(6) (2002) 759.
[58] H.F. Dadgour, M.M. Hussain, C. Smith, K. Banerjee, Design and analysis of compact ultra energy-efficient logic gates using laterally-actuated double-electrode NEMS, in: Design Automation Conference (DAC), 2010 47th ACM/IEEE, IEEE, 2010, pp. 893-896.
[59] K. Wang, B. Wang, A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature, Physica E: Low-dimensional Systems Nanostructures, 66 (2015) 197-208.
[60] Y. Hayamizu, T. Yamada, K. Mizuno, R.C. Davis, D.N. Futaba, M. Yumura, K. Hata, Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers, Nature nanotechnology, 3(5) (2008) 289.
[61] j. Qian, c. Liu, D. Zhang, Y. Zhao, The problem of the residual stress in microelectronic mechanical systems, Journal Of Mechanical Strength, 23(4) (2001) 393-401.
[62] R. Batra, M. Porfiri, D. Spinello, Vibrations of narrow microbeams predeformed by an electric field, Journal of Sound Vibration, 309(3-5) (2008) 600-612.
[63] J.D. Jackson, Classical electrodynamics, in, AAPT, 1999.
[64] R. Legtenberg, H.A. Tilmans, J. Elders, M. Elwenspoek, Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms, Sensors actuators A: Physical, 43(1-3) (1994) 230-238.
[65] A. Noghrehabadi, A. Haghparast, Dynamic and static pull-in instability analysis of partially affected nano-cantilevers using modified couple stress theory, Modares Mechanical Engineering, 16(11) (2017) 81-91 (In Persian).
[66] A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John Wiley & Sons, 2008.
[67] J.N. Reddy, An introduction to the finite element method, McGraw-hill New York, 1993.