[1] S.K. Au, J. Weber, H. Herr, Biomechanical design of a powered ankle-foot prosthesis, in: Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, IEEE, 2007, pp. 298-303.
[2] J. Geeroms, Study and Design of an Actuated Below-Knee Prosthesis, in, Citeseer, 2011.
[3] Y. Zeng, Design and testing of a passive prosthetic ankle with mechanical performance similar to that of a natural ankle, (2013) .
[4] A. Arya, A. Lees, H. Nerula, L. Klenerman, A biomechanical comparison of the SACH, Seattle and Jaipur feet using ground reaction forces, Prosthetics and Orthotics International, 19(1) (1995) 37-45.
[5] B.J. Hafner, J.E. Sanders, J.M. Czerniecki, J. Fergason, Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature, Journal of rehabilitation research and development, 39(1) (2002) 1-12.
[6] M.F. Eilenberg, H. Geyer, H. Herr, Control of a powered ankle–foot prosthesis based on a neuromuscular model, IEEE transactions on neural systems and rehabilitation engineering, 18(2) (2010) 164-173.
[7] D. Hill, H. Herr, Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: A case series, in: Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on, IEEE, 2013, pp. 1-6.
[8] S.K. Au, P. Dilworth, H. Herr, An ankle-foot emulation system for the study of human walking biomechanics, in: Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, IEEE, 2006, pp. 2. 2945-939.
[9] B. Brackx, M. Van Damme, A. Matthys, B. Vanderborght, D. Lefeber, Passive ankle-foot prosthesis prototype with extended push-off, International journal of advanced robotic systems, 10(2) (2013) 101.
[10] S.K. Au, J. Weber, H. Herr, Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy, IEEE Transactions on Robotics, 25(1) (2009) 51-66.
[11] R. Versluys, A. Desomer, G. Lenaerts, O. Pareit, B. Vanderborght, G. Perre, L. Peeraer, D. Lefeber, A biomechatronical transtibial prosthesis powered by pleated pneumatic artificial muscles, International Journal of Modelling, Identification and Control, 4(4) (2008) 394-405.
[12] J. Sun, Powered transtibial prosthetic device control system design, implementation and testing, Marquette University, 2012.
[13] R.D. Bellman, M.A. Holgate, T.G. Sugar, SPARKy 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics, in: Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, IEEE, 2008, pp. 511-516.
[14] P. Cherelle, V. Grosu, A. Matthys, B. Vanderborght, D. Lefeber, Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(1) (2014) 138-148.
[15] J. Zhu, Q. Wang, L. Wang, On the Design of a Powered Transtibial Prosthesis With Stiffness Adaptable Ankle and Toe Joints, IEEE Trans. Industrial Electronics, 61(9) (2014) 4797-4807.
[16] S. Au, M. Berniker, H. Herr, Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits, Neural Networks, 21(4) (2008) 654-666.
[17] D.A. Winter, Biomechanics and motor control of human gait: normal, elderly and pathological, 1991.