استخراج روابط صریح در تعیین فرکانس طبیعی تیر اویلر-برنولی دارای ترک روی بستر الاستیک با استفاده از روش رایلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مکانیک، دانشگاه آزاد اسلامی واحد بندر انزلی، بندر انزلی، ایران

2 مهندسی عمران-سازه، دانشگاه گیلان، رشت،

چکیده

در این مقاله، یک حل تقریبی بر مبنای روش رایلی، برای تحلیل رفتار مودال تیر اویلر-برنولی دارای ترک روی بستر الاستیک ارائه می‌شود. مدل‌سازی بستر الاستیک با استفاده از تئوری فنر ارتجاعی وینکلر انجام و میزان سفتی فنر، متناظر با خواص مادی بستر الاستیک مشخص می‌گردد. تابع دلتای دیراک برای اعمال مود باز شدگی ترک در معادله رایلی بکار گرفته می‌شود که در آن ضریب مربوط به این تابع می‑تواند برحسب ضریب سفتی یک فنر پیچشی متناظر و با درنظر گرفتن پارامترهای مادی و هندسی ترک مشخص گردد. در تحلیل حاضر، روابط صریح جدیدی برای محاسبه فرکانس طبیعی تیر دارای ترک روی بستر الاستیک در سه شرط مرزی ساده-ساده، گیردار-گیردار و گیردار-آزاد ارائه می‌شود. در این روش، فرکانس طبیعی در مود اول ارتعاش تیر دارای ترک روی بستر الاستیک به صورت نسبت انرژی پتانسیل غنی شده ماکزیمم و انرژی جنبشی ماکزیمم تعیین می‌گردد. اثرات عمق ترک، محل ترک و بستر الاستیک روی پاسخ فرکانس طبیعی تیر بر پایه روابط استخراج شده بررسی می‌شود. نتایج تحلیل‌ها نشان می‌دهد که با افزایش عمق ترک، فرکانس طبیعی تیر ترک‌خورده کاهش می‌یابد؛ درحالی که بستر الاستیک موجب افزایش فرکانس طبیعی تیر دارای ترک می‌شود. مقایسه نتایج روابط پیشنهاد شده با نتایج مدل‌سازی کامل سازه در نرم‌افزار آباکوس نشان می‌دهد که تحلیل حاضر از دقت مناسبی برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Derivation of Explicit Relationships in the Determination of the Natural Frequency of Euler-Bernoulli Cracked Beams on Elastic Foundation the Using Rayleigh Method

نویسندگان [English]

  • Ali Alijani 1
  • Morteza Khomami Abadi 2
1 Department of Mechanical Engineering, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran
2 Department of Civil Engineering, University of Guilan, Rasht, Iran
چکیده [English]

In this paper, an approximate solution based on the Rayleigh’s method is sought to analyze the vibration behavior of Euler-Bernoulli cracked beam resting on an elastic foundation. The modeling of the elastic foundation is implemented using the Winkler elastic spring theory and the stiffness factor of the elastic spring is specified corresponding to material characteristics of the elastic foundation. The Dirac’s delta function is used to apply the crack opening mode in the equation of the Rayleigh in which the factor of this function can be identified in terms of the stiffness factor of an equivalent rotational spring by considering material and geometric parameters of the crack. In the present analysis, explicit relationships are originally established to obtain the natural frequency in three boundary conditions of simply supported-simply supported, clamped-free and clamped-clamped. In this method, the natural frequency of the first mode is determined as the ratio of the maximum enriched potential energy to the maximum kinetic energy. Based on these relationships, the effects of the crack depth, the crack location and the elastic foundation on the response of natural frequency of the beam are investigated. The results of the analysis demonstrate that increasing the crack depth decreases the natural frequency of the beam containing the crack; while the elastic foundation increases the natural frequency of the cracked beam. The comparison of the results of proposed relations with those of full modeling of the structure in ABAQUS software shows a reasonable accuracy of the present analysis.

کلیدواژه‌ها [English]

  • Rayleigh method
  • Natural frequency
  • Cracked beams
  • Elastic foundation
  • Rotational spring
[1] G. R. Irwin, J. A. Kies, Critical energy rate analysis of fracture strength, Journal of Welding, 33(1)(1954) 193-198.
[2] G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, 24(1) (1957) 361-364.
[3] B. Biondi, S. Caddemi, Closed form solutions of Euler–Bernoulli beams with singularities, Journal of Solids Structure, 42 (2005) 3027–3044.
[4] S. Caddemi, I. Calio, Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks, Journal of Sound and Vibration, 327(2009) 473-489.
[5] P. Ricci, E. Viola, Stress intensity factors for cracked T-section and dynamic behaviour of T-beams, Engineering Fracture Mechanics, 73 (2006) 91-111.
[6] T. Yokoyama, M.C. Chen, Vibration analysis of edge- cracked beams using a line-spring model, Engineering Fracture Mechanics, 59(3) (1998) 403-409.
[7] A.D. Dimarogonas, Vibration of cracked structures: A state of the art review, Engineering Fracture Mechanics, 55(5) (1996) 831-857.
[8] M. H. Walid, Crack detection from the variation of the eigenfrequencies of a beam on elastic foundation, Engineering Fracture Mechanics, 52(3) (1995) 409-421.
[9] M. Hsu, Vibration analysis of  edge-cracked  beam on elastic foundation with axial loading using the differential quadrature method, Comput. Methods Appl. Mech. Engrg., 194(1) (2005) 1–17.
[10] M. Nassar, S. Matbuly, M. Ragb, Vibration analysis of structural elements using differential quadrature method, Journal of Advanced Research, 4(1) (2013) 93–102.
[11] Y. Shin, J. Yun, K. Seong, J. Kim, S. Kang, Natural frequencies of Euler-Bernoulli beam with open cracks on elastic foundations, Journal of Mechanical Science and Technology, 20(4) (2006) 467-472.
[12] T. Yan, S. Kitipornchai, J. Yang, X. Q. He, Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load, Composite Structures, 93(11)(2011) 2992–3001.
[13] A. Mirzabeigy, F. Bakhtiari-Nejad, Semi-analytical approach for free vibration analysis of cracked beams resting on two-parameter elastic foundation with elastically restrained ends, Front. Mech. Eng., 9( 2)(2014) 191–202.
[14] M. Attar, A. Karrech, K. Regenauer-Lieb, Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model, Journal of Sound and Vibration, 333(11) (2014) 2359–2377.
[15] M. Ghasemi, A. Ariaei, Crack detection in Euler- Bernoulli beams on elastic foundation using genetic algorithm based on discrete element technique, Indian j.sci.res., 1( 2) (2014) 248-253.
[16] S. D. Akbas, Free Vibration Analysis Of Edge Cracked Functionally Graded Beams Resting On Winkler-Pasternak Foundation, International Journal of Engineering & Applied Sciences, 7(3) (2015) 1-15.
[17] A. C. Batihan, F. S. Kadioglu, Vibration Analysis of a Cracked Beam on anElastic Foundation, International Journal of Structural Stability and Dynamics, 16( 5)(2016) 1-18.
[18] A. Khnaijar, R. Benamar, A discrete model for nonlinear vibrations of a simply supported cracked beams resting on elastic foundations, Diagnostyka, 18( 3) (2017) 39-46.
[19] Y. Kumar, The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review, Journal of Vibration and Control, 24(1) (2017) 1205-1227.
[21] K. V. Terzaghi, Evaluation of coefficient of subgrade reaction, Geotechnique, 5(4) (1995) 297-326.
[22] A. W. Leissa, M. S. Qatu, Vibrations of Continuous Systems, First edition, McGraw-Hill United States of America, 2011.
[23] ABAQUS, version 6.12-3, Simulia Abaqus, Dassault Systemes Simulia Corp, Build ID: 2012-10-04- 20.52.12-120045, United States of America, 2012.