Numerical Study of Water Droplet Impact on a Surface Using a Sharp Approach for Interface Modeling

Document Type : Research Article

Author

Yasouj University, Yasouj, Iran

Abstract

In this research, water droplet impact process on a solid surface is simulated using a sharp approach for interface modeling. This approach is based on the solving momentum and continuity equations and imposing appropriate jump conditions at the interface. The level set method is used for interface tracking and the ghost fluid method is used to impose jump conditions at the interface accurately. In this way, smearing of quantities across interface is prevented and discontinuities are preserved at interface. The accuracy of numerical procedure is approved via comparison of simulation results with experimental and numerical data. Simulation results show that the used numerical method in comparison with the volume of fluid method represents more accurate prediction of droplet behavior during impact process. The effect of contact angle between water droplet and surface on the impact process is investigated. For contact angles less than 90°, water droplet spreads on the surface after impact. But, for contact angles greater than 90°, droplet starts to recoil after spreading. In this case, it is possible that droplet rebound from surface after recoiling. Maximum spreading radius of droplet decreases by an increase in contact angle.

Keywords

Main Subjects


[1]  M. Pasandideh-Fard,  S.  Chandra,  J.  Mostaghimi,  A three-dimensional model of droplet impact and solidification, International Journal of Heat and Mass Transfer, 45(11) (2002) 2229-2242.

[2]  M. Pasandideh-Fard, V. Pershin, S. Chandra, J. Mostaghimi, Splat shapes in a thermal spray coating process: simulations and experiments, Journal of Thermal Spray Technology, 11(2) (2002) 206-217.
[3]  M. Pasandideh‐Fard, Y. Qiao, S. Chandra, J. Mostaghimi, Capillary effects during droplet impact on a solid surface, Physics of fluids, 8(3) (1996) 650- 659.
[4]  R. Rioboo, C. Tropea, M. Marengo, Outcomes from a drop impact on solid surfaces, Atomization and sprays, 11(2) (2001).
[5]  R. Crooks, J. Cooper-White, D.V. Boger, The role of dynamic surface tension and elasticity on the dynamics of drop impact, Chemical Engineering Science, 56(19) (2001) 5575-5592.
[6]  K.P. Gatne, Experimental investigation of droplet impact dynamics on solid surfaces, University of Cincinnati, 2006.
[7]  P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, Drop impact upon micro-and nanostructured superhydrophobic surfaces, Langmuir, 25(20) (2009) 12293-12298.
[8]  D. Vadillo, A. Soucemarianadin, C. Delattre, D. Roux, Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces, Physics of fluids, 21(12) (2009) 122002.
[9]  M. Bussmann, S. Chandra, J. Mostaghimi, Modeling the splash of a droplet impacting a solid surface, Physics of fluids, 12(12) (2000) 3121-3132.
[10]  P.R. Gunjal, V.V. Ranade, R.V. Chaudhari, Dynamics of drop impact on solid surface: experiments and VOF simulations, AIChE Journal, 51(1) (2005) 59-78.
[11]  H. Fujimoto, Y. Shiotani, A.Y. Tong, T. Hama, H. Takuda, Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate, International Journal of Multiphase Flow, 33(3) (2007) 317-332.
[12]  S.F. Lunkad, V.V. Buwa, K. Nigam, Numerical simulations of drop impact and spreading on horizontal and inclined surfaces, Chemical Engineering Science, 62(24) (2007) 7214-7224.
[13]  I. Roisman, L. Opfer, C. Tropea, M. Raessi, J. Mostaghimi, S. Chandra, Drop impact onto a dry surface: Role of the dynamic contact angle, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1-3) (2008) 183-191.
[14] M. Muradoglu, S. Tasoglu, A front-tracking method  for  computational  modeling  of  impact   and spreading of viscous droplets on solid walls, Computers & Fluids, 39(4) (2010) 615-625.
[15] S.A. Bokil, On Computational Modeling of Dynamic Drop-Surface Interactions During Post- Impact Spreading of Water and Aqueous Surfactant Solution, University of Cincinnati, 2013.
[16] S. Jafari, M.R. Ansari, N. Samkhaniani, Contact angle comparison of droplet impact on solid surface using VOF, Modares Mechanical Engineering, 15(3) (2015) 84-94.
[17]  I. Malgarinos, N. Nikolopoulos, M. Marengo,C. Antonini, M. Gavaises, VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model, Advances in colloid and interface science, 212 (2014) 1-20.
[18] M. Klitz, Numerical Simulation of Droplets with Dynamic Contact Angles, Universitäts-und Landesbibliothek Bonn, 2015.
[19] J. Hu, R. Jia, X. Huang, X. Xiong, K.-t. Wan, Numerical Simulation of the Dynamics of Water Droplet Impingement on a Wax Surface, in, ASEE, 2015.
[20] Q. Zhang, T.-Z. Qian, X.-P. Wang, Phase field simulation of a droplet impacting a solid surface, Physics of fluids, 28(2) (2016) 022103.
[21] M. Kang, R.P. Fedkiw, X.-D. Liu, A boundary condition capturing method for multiphase incompressible flow, Journal of Scientific Computing, 15(3) (2000) 323-360.
[22] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), Journal of computational physics, 152(2) (1999) 457-492.
[23] S.-b. Li, Z. Yan, R.-d. Li, L. Wang, Numerical simulation of single bubble rising in shear-thinning fluids by level set method, Journal of Central South University, 23(4) (2016) 1000-1006.
[24] L.R. Villegas, S. Tanguy, G. Castanet, O. Caballina, F. Lemoine, Direct numerical simulation of the impact of a droplet onto a hot surface above the Leidenfrost temperature, International Journal of Heat and Mass Transfer, 104 (2017) 1090-1109.
[25] X.-D. Liu, R.P. Fedkiw, M. Kang, A boundary condition capturing method for Poisson’s equation on irregular domains, Journal of computational physics, 160(1) (2000) 151-178.