پایداری پره چرخان سرعت متغیر با در نظر گرفتن حرکت عرضی خارج از صفحه

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

در این مقاله تشدید پارامتری اصلی در پره­ های چرخان سرعت متغیر بررسی می­ گردد. در مدل مورد بررسی وابستگی حرکت­ های عرضی خارج از صفحه-محوری ناشی از نیروی کریولیس در نظر گرفته شده است. معادلات حرکت حاکم، معادلات موجود در مقالات بر اساس فرمولاسیون دقیق هندسی برای پره­های بدون اثر تغییرشکل برشی می­ باشد. سرعت چرخش پره دارای مقدار میانگین ثابت در نظر گرفته شده، که این سرعت ثابت با تغییرات هارمونیک کوچکی مختل شده است. فرکانس تغییرات این اغتشاش وارد شده، دو برابر یکی از فرکانس­ های طبیعی عرضی خارج از صفحه و یا محوری پره در نظر گرفته شده است و بدین ترتیب باعث تشدید پارامتری اصلی خواهد گردید. روش مستقیم مقیاس های چندگانه جهت مطالعه ی ناپایداری دینامیکی ایجاد شده توسط تشدید پارامتری اصلی به کار گرفته شده است. با استفاده از روش مقیاس های چندگانه، رابطه­ ای بسته جهت مشخص نمودن مرز منطقه ی پایداری تحت شرایط تشدید پارامتری اصلی، به دست آمده است. نتایج حاضر با نتایج موجود در مقالات مقایسه و اعتبارسنجی شده است. پس از اعتبار سنجی نتایج، مطالعه­ ی موردی جهت شفاف سازی اثر سرعت چرخش و شماره ی مود بر منطقه ی پایداری پارامتری، انجام پذیرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stability of a Blade with Varying Rotation Speed by Considering the Lagging Motion

نویسنده [English]

  • H. Arvin Boroujeni
Faculty of Engineering, Shahrekord University, Shahrekord, Iran
چکیده [English]

Principal parametric resonance in rotating blades with varying rotating speed is investigated in this paper. In the presented model, the lagging-axial coupling motion due to Coriolis force is considered. The governing equations of motion are the available equations in the literature based on the exact geometrical formulation for unshearable blades. The rotating speed of the blades is considered as a mean value perturbed by a small harmonic variation. The variation frequency of the perturbed value is considered twice the one of the lagging frequencies and/or one of the axial frequencies which causes the principal parametric resonance. The direct method of multiple scales is implemented to study the dynamic instability produced by the principal parametric resonance. A closed form relation which defines the stability region boundary under the condition of the principal parametric resonance is derived using the method of multiple scales. The current results are validated by comparison with the available results in the literature. After validation of the results, a comprehensive study has been adjusted for illustration of the rotating speed effects and mode number influences on the parametric stability region.
 

کلیدواژه‌ها [English]

  • Principal Parametric Resonance
  • Method of Multiple Scales
  • Rotating blades
  • Exact geometrical formulation
  • Coriolis force
[1] W. Lacarbonara, Nonlinear structural mechanics: theory, dynamical phenomena and modeling, Springer Science & Business Media, 2013.
[2] A.N. Cleland, Foundations of nanomechanics: from solid-state theory to device applications, Springer Science & Business Media, 2013.
[3] C.-M. Chin, A.H. Nayfeh, Three-to-one internal resonances in parametrically excited hinged-clamped beams, Nonlinear Dynamics, 20(2) (1999) 131-158.
[4] P.D. Kourdis, A.F. Vakakis, Some results on the dynamics of the linear parametric oscillator with general time-varying frequency, Applied mathematics and computation, 183(2) (2006) 1235-1248.
[5] M.H. Ghayesh, S. Balar, Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams, International Journal of Solids and Structures, 45(25-26) (2008) 6451-6467.
[6] M.H. Ghayesh, M. Yourdkhani, S. Balar, T. Reid, Vibrations and stability of axially traveling laminated beams, Applied Mathematics and Computation, 217(2) (2010) 545-556.
[7] H. Chen, D. Zuo, Z. Zhang, Q. Xu, Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations, Nonlinear Dynamics, 62(3) (2010) 623-646.
[8] L.-Q. Chen, Y.-Q. Tang, Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions, Journal of vibration and acoustics, 134(1) (2012) 011008.
[9] B.B. Özhan, M. Pakdemirli, Principal parametric resonances of a general continuous system with cubic nonlinearities, Applied Mathematics and Computation, 219(5) (2012) 2412-2423.
[10] B. Sahoo, L. Panda, G. Pohit, Nonlinear dynamics of an Euler-Bernoulli beam with parametric and internal resonances, Procedia Engineering, 64 (2013) 727-736.
[11] M.C. Da Silva, D. Hodges, Nonlinear flexure and torsion of rotating beams, with application to helicopter rotor blades-I. Formulation, Vertica, 10(2) (1986) 151-169.
[12] M.C. da Silva, D. Hodges, NONLINEAR FLEXURE AND TORSION OF ROTATING BEAMS, WITH APPLICATION TO HELICOPTER ROTOR BLADES-II. RESPONSE AND STABILITY RES UL TS, Vertica, 10(2) (1986) 171-186.
[13] M.C. Da Silva, A comprehensive analysis of the dynamics of a helicopter rotor blade, International Journal of Solids and Structures, 35(7-8) (1998) 619-635.
[14] C. Saravia, S. Machado, V. Cortínez, Dynamic stability of rotating thin-walled composite beams, Mec Comput, 28 (2009) 3297-3317.
[15] Ö. Turhan, G. Bulut, On nonlinear vibrations of a rotating beam, Journal of sound and vibration, 322(1-2) (2009) 314-335.
[16] J. Valverde, D. García-Vallejo, Stability analysis of a substructured model of the rotating beam, Nonlinear dynamics, 55(4) (2009) 355-372.
[17] H. Arvin, F. Bakhtiari-Nejad, Non-linear modal analysis of a rotating beam, International Journal of Non-Linear Mechanics, 46(6) (2011) 877-897.
[18] W. Lacarbonara, H. Arvin, F. Bakhtiari-Nejad, A geometrically exact approach to the overall dynamics of elastic rotating blades—part 1: linear modal properties, Nonlinear Dynamics, 70(1) (2012) 659-675.
[19] H. Arvin, W. Lacarbonara, F. Bakhtiari-Nejad, A geometrically exact approach to the overall dynamics of elastic rotating blades—part 2: flapping nonlinear normal modes, Nonlinear Dynamics, 70(3) (2012) 2279-2301.
[20] H. Arvin, W. Lacarbonara, A fully nonlinear dynamic formulation for rotating composite beams: nonlinear normal modes in flapping, Composite structures, 109 (2014) 93-105.
[21] H. Arvin, Y.-Q. Tang, A.A. Nadooshan, Dynamic stability in principal parametric resonance of rotating beams: Method of multiple scales versus differential quadrature method, International Journal of Non-Linear Mechanics, 85 (2016) 118-125.
[22] H. Arvin, F. Bakhtiari-Nejad, Nonlinear free vibration analysis of rotating composite Timoshenko beams, Composite Structures, 96 (2013) 29-43.