[1] W. Lacarbonara, Nonlinear structural mechanics: theory, dynamical phenomena and modeling, Springer Science & Business Media, 2013.
[2] A.N. Cleland, Foundations of nanomechanics: from solid-state theory to device applications, Springer Science & Business Media, 2013.
[3] C.-M. Chin, A.H. Nayfeh, Three-to-one internal resonances in parametrically excited hinged-clamped beams, Nonlinear Dynamics, 20(2) (1999) 131-158.
[4] P.D. Kourdis, A.F. Vakakis, Some results on the dynamics of the linear parametric oscillator with general time-varying frequency, Applied mathematics and computation, 183(2) (2006) 1235-1248.
[5] M.H. Ghayesh, S. Balar, Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams, International Journal of Solids and Structures, 45(25-26) (2008) 6451-6467.
[6] M.H. Ghayesh, M. Yourdkhani, S. Balar, T. Reid, Vibrations and stability of axially traveling laminated beams, Applied Mathematics and Computation, 217(2) (2010) 545-556.
[7] H. Chen, D. Zuo, Z. Zhang, Q. Xu, Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations, Nonlinear Dynamics, 62(3) (2010) 623-646.
[8] L.-Q. Chen, Y.-Q. Tang, Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions, Journal of vibration and acoustics, 134(1) (2012) 011008.
[9] B.B. Özhan, M. Pakdemirli, Principal parametric resonances of a general continuous system with cubic nonlinearities, Applied Mathematics and Computation, 219(5) (2012) 2412-2423.
[10] B. Sahoo, L. Panda, G. Pohit, Nonlinear dynamics of an Euler-Bernoulli beam with parametric and internal resonances, Procedia Engineering, 64 (2013) 727-736.
[11] M.C. Da Silva, D. Hodges, Nonlinear flexure and torsion of rotating beams, with application to helicopter rotor blades-I. Formulation, Vertica, 10(2) (1986) 151-169.
[12] M.C. da Silva, D. Hodges, NONLINEAR FLEXURE AND TORSION OF ROTATING BEAMS, WITH APPLICATION TO HELICOPTER ROTOR BLADES-II. RESPONSE AND STABILITY RES UL TS, Vertica, 10(2) (1986) 171-186.
[13] M.C. Da Silva, A comprehensive analysis of the dynamics of a helicopter rotor blade, International Journal of Solids and Structures, 35(7-8) (1998) 619-635.
[14] C. Saravia, S. Machado, V. Cortínez, Dynamic stability of rotating thin-walled composite beams, Mec Comput, 28 (2009) 3297-3317.
[15] Ö. Turhan, G. Bulut, On nonlinear vibrations of a rotating beam, Journal of sound and vibration, 322(1-2) (2009) 314-335.
[16] J. Valverde, D. García-Vallejo, Stability analysis of a substructured model of the rotating beam, Nonlinear dynamics, 55(4) (2009) 355-372.
[17] H. Arvin, F. Bakhtiari-Nejad, Non-linear modal analysis of a rotating beam, International Journal of Non-Linear Mechanics, 46(6) (2011) 877-897.
[18] W. Lacarbonara, H. Arvin, F. Bakhtiari-Nejad, A geometrically exact approach to the overall dynamics of elastic rotating blades—part 1: linear modal properties, Nonlinear Dynamics, 70(1) (2012) 659-675.
[19] H. Arvin, W. Lacarbonara, F. Bakhtiari-Nejad, A geometrically exact approach to the overall dynamics of elastic rotating blades—part 2: flapping nonlinear normal modes, Nonlinear Dynamics, 70(3) (2012) 2279-2301.
[20] H. Arvin, W. Lacarbonara, A fully nonlinear dynamic formulation for rotating composite beams: nonlinear normal modes in flapping, Composite structures, 109 (2014) 93-105.
[21] H. Arvin, Y.-Q. Tang, A.A. Nadooshan, Dynamic stability in principal parametric resonance of rotating beams: Method of multiple scales versus differential quadrature method, International Journal of Non-Linear Mechanics, 85 (2016) 118-125.
[22] H. Arvin, F. Bakhtiari-Nejad, Nonlinear free vibration analysis of rotating composite Timoshenko beams, Composite Structures, 96 (2013) 29-43.