[1] L. Yan, G. Yue, B. He, Application of an efficient exponential wide band model for the natural gas combustion simulation in a 300 kW BERL burner furnace, Applied Thermal Engineering, 94 (2016) 209-220.
[2] M.E. Biresselioglu, T. Yelkenci, I.O. Oz, Investigating the natural gas supply security: A new perspective, Energy, 80 (2015) 168-176.
[3] B.W. Butler, M.K. Denison, B.W. Webb, Radiation heat transfer in a laboratory-scale, pulverized coal-fired reactor, Experimental Thermal and Fluid Science, 9(1) (1994) 69-79.
[4] S.B.H.C. Neal, E.W. Northover, R.J. Preece, The measurement of radiant heat flux in large boiler furnaces—II. Development of flux measuring instruments, International Journal of Heat and Mass Transfer, 23(7) (1980) 1023-1031.
[5] F.R. Centeno, C.V. da Silva, F.H.R. França, The influence of gas radiation on the thermal behavior of a 2D axisymmetric turbulent non-premixed methane–air flame, Energy Conversion and Management, 79 (2014) 405-414.
[6] P.J. Coelho, Numerical simulation of the interaction between turbulence and radiation in reactive flows, Progress in Energy and Combustion Science, 33(4) (2007) 311-383.
[7] F.R. Centeno, R. Brittes, F.H.R. França, C.V. da Silva, Application of the WSGG model for the calculation of gas–soot radiation in a turbulent non-premixed methane–air flame inside a cylindrical combustion chamber, International Journal of Heat and Mass Transfer, 93 (2016) 742-753.
[8] S.H. Pourhoseini, M. Moghiman, Effect of pulverized anthracite coal particles injection on thermal and radiative characteristics of natural gas flame: An experimental study, Fuel, 140 (2015) 44-49.
[9] S.R. Rockwell, A.S. Rangwala, Influence of coal dust on premixed turbulent methane–air flames, Combustion and Flame, 160(3) (2013) 635-640.
[10] Y. Xie, V. Raghavan, A.S. Rangwala, Study of interaction of entrained coal dust particles in lean methane–air premixed flames, Combustion and Flame, 159(7) (2012) 2449-2456.
[11] D. Bradley, Z. Chen, S. El-Sherif, S. El-Din Habik, G. John, G. Dixon-Lewis, Structure of laminar premixed carbon-methane-air flames and ultrafine coal combustion, Combustion and Flame, 96(1) (1994) 80-96.
[12] D. Bradley, G. Dixon-Lewis, S. El-Din Habik, Lean flammability limits and laminar burning velocities of CH4-air-graphite mixtures and fine coal dusts, Combustion and Flame, 77(1) (1989) 41-50.
[13] D. Bradley, G. Dixon-Lewis, S. El-Din Habik, L.K. Kwa, S. El-Sherif, Laminar flame structure and burning velocities of premixed methanol-air, Combustion and Flame, 85(1-2) (1991) 105-120.
[14] R.K. Eckhoff, Does the dust explosion risk increase when moving from μm-particle powders to powders of nm-particles, Journal of Loss Prevention in the Process Industries, 25(3) (2012) 448-459.
[15] F.N. Egolfopoulos, Solid Fuel Burning in Steady, Strained, Premixed Flow Fields: The Graphite/Air/Methane System, International Journal of Energy Research, 24 (2000) 1257-1276.
[16] K. Denbigh, The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Engineering, Cambridge University Press, 1981.
[17] M. Younessi-Sinaki, E.A. Matida, F. Hamdullahpur, Kinetic model of homogeneous thermal decomposition of methane and ethane, International Journal of Hydrogen Energy, 34(9) (2009) 3710-3716.
[18] S.R. Turns, An introduction to combustion, McGraw-hill New York, 1996.
[19] W.C. Reynolds, The Element potential Method For Chemical Equilibrium Analysis : STANJAN Program, Stanford University, 1986.
[20] R.W.M. William R. Smith, Chemical reaction equilibrium analysis : theory and algorithms University of Guelph, 1982.
[21] F.G.H. Ralph H. Petrucci, Jeffry D. Madura, Carey Bissonnette, General Chemistry: Principles and Modern Applications, 10 ed., Pearson Prentice Hall, 2010.
[22] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, , GRI-Mech 3.0, 2007.
[23] S.R. Turns, An introduction to combustion, McGraw-hill New York, 1996.
[24] D. Goodwin, Cantera: object oriented software for reacting flows, in, California Institute for Technology (Caltech), 2006.
[25] K.C. Lück, G. Tsatsaronis, A study of flat methane-air flames at various equivalence ratios, Acta Astronautica, 6(3–4) (1979) 467-475.
[26] K. Seshadri, A.L. Berlad, V. Tangirala, The structure of premixed particle-cloud flames, Combustion and Flame, 89(3) (1992) 333-342.
[27] D.E. Winterbone, 14 - Chemical Kinetics, in: Advanced Thermodynamics for Engineers, Butterworth-Heinemann, Oxford, 1997, pp. 276-290.
[28] C. Beyler, SFPE Handbook of Fire Protection Engineering, Springer, New York, 2016.