[1] F.A.L. Dullien, Porous Media, Fluid Transport and Pore Structure, Academic Press, 1991.
[2] E. C. Donaldson, G. V. Chilingarian, and T.F. Yen, Enhanced Oil Recovery, I Fundamentals and Analyses, Elsevier,1985.
[3] D.B. Ingham, I. Pop, Transport Phenomena in Porous Media II, Elsevier, 2002.
[4] A.R.A. Khaled, K. Vafai, The Role of porous media in modeling flow and heat transfer in biological tissues, International Journal of Heat and Mass Transfer, 46(26) (2003) 4989-5003.
[5] J.S. Rowlinson, B. Widom, Porous media, Applications in Biological Systems and Biotechnology, 2011.
[6] C. Pan, L.-S. Luo, C.T. Miller, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Computer & Fluids, 35(8-9) (2006) 898-909.
[7] U. Aaltosalmi, Fluid Flow in Porous Media with the Lattice-Boltzmann Method, (No. 3/2005) (2005).
[8] A. K. Gunstensen, D. H. Rothman, Lattice-Boltzmann studies of immiscible two-Phase flow through porous media, Journal of Geophysical Research, 98(B4) (1993) 6431-6441.
[9] B. Ferreol, D. H. Rothman,Lattice-Boltzmann simulations of flow through fontainebleau sandstone, Transport in Porous Media, 20 (1995) 3-20.
[10] N. S. Martys, H. Chen, Simulation of multi-component fluids in complex three-dimensional geometries by the lattice Boltzmann method, Physical Review E, 53(1) (1996) 743.
[11] J. Tölke, M. Krafczyk, M. Schulz, and E. Rank, Lattice Boltzmann simulations of binary fluid flow through porous media, Philosophical Transactions of the Royal Society A, 360(1792) (2002) 535–545,.
[12] C.L. Lin, A.R. Videla, J.D. Miller, Advanced three-dimensional multiphase flow simulation in porous media reconstructed from X-ray microtomography using the He Chen Zhang lattice Boltzmann model, Flow Measurement and Instrumentation, 21(3) (2010) 255-261.
[13] X. Frank, P. Perré, Droplet spreading on a porous surface, A lattice Boltzmann study, Physics of Fluids, 24(4) (2012) 042101.
[14] H. Huang, Z. Li, L. Shuaishuai, X. Lu, Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-Phase flow in porous media, International Journal of Numerical Methods in Fluids, 61(3) (2009) 341-354.
[15] C. Pan, M. Hilpert, C.T. Miller, Lattice-Boltzmann simulation of two-phase flow in porous media, Water Resources Research, 40(1) (2004).
[16] L. Hao, P. Cheng, Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method, International Journal of Heat and Mass Transfer, 53(9-10) (2010) 1908-1913.
[17] Y. Tabe, L. Yongju, C. Takemi, K. Masaya, Numerical simulation of liquid water and gas flow in a channel and simplified gas diffusion layer model of polymer electrolyte membrane fuel cell using the lattice Boltzmann method, Journal of Power Sources, 193(1) (2009) 24-31.
[18] H. Huang, J. Huan, X. Lu, Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method, Computers & Fluids, 93 (2014) 164-172.
[19] H. Huan, L. Wang, X. Lu, Evaluation of three lattice Boltzmann models for multiphase flows in porous media, Computers and Mathematics with Applications, 61(12) (2014) 3606–3617.
[20] H. Liu, A. J. Valocchi, Q. Kang, C. Werth, Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method, Transport in Porous Media, 99(3) (2013) 555-580.
[21] N. Latifiyan, M. Farhadzadeh, P. Hanafizadeh, M. H. Rahimian, Numerical study of droplet evaporation in contactwith hot porous surface using lattice Boltzmann method, International Communications in Heat and Mass Transfer, 71 (2016) 56-74 .
[22] X. He, S. Chen, R. Zhang, A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh– Taylor Instability, Journal of Computational Physics, 152(2) (1999) 642-663.
[23] A. Javadi, D. Bastani, M. Taeibi-Rahni, Kh. Javadi, The effects of hydrodynamics characteristics on the mass transfer during droplet formation using computational approach, ASME's International Mechanical Engineering Congress and Exposition, (2006) 811-821.
[24] F. Chen, H. Hagen, A survey of interface tracking methods in multi-phase fluid visualization, Visualization of Large and Unstructured Data Sets - Applications in Geospatial Planning, Modeling and Engineering (Irtg 1131 Workshop), 19 (2011) 11-19.
[25] J.J. Cooper-White, J.E. Fagan, V. Tirtaatmadja, D.R. Lester, D.V. Boger, Drop formation dynamics of constant low-viscosity, Non-Newtonian Fluid Mechanics, 106(1) (2002) 29-59.
[26] P.M. Heertjes, L.H. De-Nie, D.H. De-Vries, Drop formation in liquid-liquid systems-II testing of the considerations given in part I, for drop volumes below the jetting velocity, a criterion for the jetting velocity, Chemical Engineering Science, 26(3) (1971) 441-449.
[27] A.G. Yiotis, J. Psihogios, M.E. Kainourgiakis, A. Papaioannou, A.K. Stubos, A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media, Colloids and Surfaces A-physicochemical and Engineering Aspects, 300(1-2) (2007) 35-49.
[28] Z.L. Yang, T.N. Dinh, R.R. Nourgaliev, B.R. Sehgal, Numerical investigation of bubble growth and detachment by the lattice Boltzmann method, International Journal of Heat and Mass Transfer, 44(1) (2001) 195-206.
[29] L.S. Kim, H.K. Jeong, M.Y. Ha, K.C. Kim, Numerical simulation of droplet formation in a micro-channel using the lattice Boltzmann method, Journal of Mechanical Science and Technology, 22(4) (2008) 770-779.