[1] R.-H. Chen, J. F. DRISCOLL, J. Kelly, M. Namazian, R. Schefer, A comparison of bluff-body and swirl-stabilized flames, Combustion science and Technology, Vol. 71, No. 4-6, pp. 197-217, 1990.
[2] S. Hosokawa, Y. Ikeda, T. Nakajima, Effect of flame holder shape on vortex shedding, 32nd Joint Propulsion Conference and Exhibit, 1996.
[3] G. Winterfeld, on processes of turbulent exchange behind flame holders, in Proceeding of, Elsevier, pp. 1265-1275.
[4] A. Mestre, Combustion Researches and Reviews, Butterworth's Scientific Publications, London, 1955.
[5] R. Soenoko, The Effect of a Flame Holder Shape Modification Toward the Diffusion Flame Stability Zone Shift, World Applied Sciences Journal, Vol. 8, No. 3, pp. 339-344, 2010.
[6] S. Hashemi, N. Hajialigol, A. Fattahi, K. Mazaheri, R. Heydari, Investigation of a flame holder geometry effect on flame structure in non-premixed combustion, Journal of Mechanical Science and Technology, Vol. 27, No. 11, pp. 3505-3512, 2013.
[7] S. Hashemi, N. Hajialigol, K. Mazaheri, A. Fattahi, Investigation of Air Turbulence Intensity Effect on the Flame Structure in Different Flame Holder Geometry, International Journal of Engineering-Transactions C: Aspects, Vol. 26, No. 12, pp. 1423, 2013.
[8] M. Miguel-Brebion, D. Mejia, P. Xavier, F. Duchaine, B. Bedat, L. Selle, T. Poinsot, Joint experimental and numerical study of the influence of flame holder temperature on the stabilization of a laminar methane flame on a cylinder, Combustion and Flame, Vol. 172, pp. 153-161, 2016.
[9] S. Hong, S. J. Shanbhogue, K. S. Kedia, A. F. Ghoniem, Impact of the flame-holder heat-transfer characteristics on the onset of combustion instability, Combustion Science and Technology, Vol. 185, No. 10, pp. 1541-1567, 2013.
[10] S. Hashemi, H. F. Jounaghani, Experimental study of the effect of a simple flame holder on the stability of a non-premixed flame, AmirKabir Journal of Science & Research, In Press, 2016. (In Persian)
[11] M. Mahmoodi Arya, A. Fahimi Rad, H. Momahedi Heravi, Experimental investigation on the effect of CO2 diluents on pollutants emission in propane-air non-premixed flames, Energy Engineering Management, Vol. 1, No. 2, pp. 31-40, 2012.
[12] J. I. Erete, K. J. Hughes, L. Ma, M. Fairweather, M. Pourkashanian, A. Williams, Effect of CO 2 dilution on the structure and emissions from turbulent, non-premixed methane–air jet flames, Journal of the Energy Institute, 2016.
[13] T. Boushaki, N. Merlo, C. Chauveau, I. Gökalp, Study of emission pollutants and dynamics of non-premixed turbulent oxygen enriched flames from a swirl burner, Proceedings of the Combustion Institute, 2016.
[14] H. Kobayashi, K. Oono, E.-S. Cho, H. Hagiwara, Y. Ogami, T. Niioka, Effects of turbulence on flame structure and NOx emission of turbulent jet non-premixed flames in high-temperature air combustion, JSME International Journal Series B, Vol. 48, No. 2, pp. 286-292, 2005.
[15] T. Terasaki, S. Hayashi, The effects of fuel-air mixing on NO x formation in non-premixed swirl burners, in Proceeding of, Elsevier, pp. 2733-2739.
[16] S.-H. Kim, M. Kim, Y. Yoon, I.-S. Jeung, The effect of flame radiation on the scaling of nitrogen oxide emissions in turbulent hydrogen non-premixed flames, Proceedings of the Combustion Institute, Vol. 29, No. 2, pp. 1951-1956, 2002
[17] R. P. K. de Mello, C. A. Martins, A. O. de Toledo, M. T. de Mendonça, M. A. Ferreira, REYNOLDS NUMBER AND EQUIVALENCE RATIO EFFECTS ON NOx EMISSION ON NON PREMIXED TURBULENT FLAMES, 19th International Congress of Mechanical Engineering, 2007.
[18] J. Oh, P. Heo, Y. Yoon, Acoustic excitation effect on NOx reduction and flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air, International journal of hydrogen energy, Vol. 34, No. 18, pp. 7851-7861, 2009.
[19] P. Baziar, A. Hajipour, A. Fahimirad, M. M. Arya, H. Heravi, The Effect of Swirl on NOX Formation in a Non-Premixed Propane/Air Flame, International Journal of Mechatronics, Electrical and Computer Technology , Vol. 5, No. 15, pp. 2175-2185, 2015.
[20] R. Cheng, D. Littlejohn, W. A. Nazeer, K. Smith, Laboratory studies of the flow field characteristics of low-swirl injectors for adaptation to fuel-flexible turbines, Journal of Engineering for Gas Turbines and Power, Vol. 130, No. 2, pp. 021501, 2008.
[21] J. P. Holman, Experimental Methods for Engineers: McGraw-Hill, 1994.