New Design of Cross-flow Fluidized Bed Dryers

Document Type : Research Article

Authors

1 Engineering Faculty, Islamic Azad University North Tehran Branch, Tehran, Iran

2 Department of Chemical Engineering, Iran University of Science & Technology, Tehran, Iran

Abstract

Drying process demands high power consumption due to the low efficiency of this process in the industries. Therefore, modeling and simulation of dryers in order to optimize them and to design more efficient dryers is necessary. In this research, a cross-flow fluidized bed dryer has been simulated in order to evaluate a new design of the dryer. A mathematical model has been used to predict outlet solid moisture and temperature as well as outlet air humidity and temperature of a single story fluidized bed. The simulation results were evaluated using the experimental data of a pilot cross flow fluidize bed dryer. The comparison showed that the model can reasonably predict the process. Therefore, the simulation was used to investigate a new design of three story dryer (three sequential single story dryers). The simulation results showed while inlet solid moisture was 0.32 and outlet solid moisture for the single-story dryer was 0.19, in the same conditions, outlet solid moisture for the three-story dryer was 0.13. This means the new design can reduce solid moisture by 50 percent more, indicating the better use of hot air and subsequently more energy saving.

Keywords

Main Subjects


[1] A.S. Mujumdar, Handbook of industrial drying, Crc Press, 2014.
[2] H. Darvishi, M.H. Khoshtaghaza, S. Minaei, Effects of fluidized bed drying on the quality of soybean kernels, Journal of the Saudi Society of Agricultural Sciences, 14(2) (2015) 134-139.
[3] W.R.W. Daud, Fluidized bed dryers—Recent advances, Advanced Powder Technology, 19(5) (2008) 403-418.
[4] A. Wanjari, B. Thorat, C. Baker, A. Mujumdar, Design and modeling of plug flow fluid bed dryers, Drying technology, 24(2) (2006) 147-157.
[5] F. Brod, K. Park, R. De Almeida, Image analysis to obtain the vibration amplitude and the residence time distribution of a vibro-fluidized dryer, Food and bioproducts processing, 82(2) (2004) 157-163.
[6] S. Satija, I. Zucker, Hydrodynamics of vibro-fluidized beds, Drying Technology, 4(1) (1986) 19-43.
[7] C. Baker, Predicting the energy consumption of continuous well-mixed fluidized bed dryers from drying kinetic data, Drying Technology, 17(7-8) (1999) 1533-1555.
[8] C. Baker, The design and performance of continuous well-mixed fluidized bed dryers-an analytical approach, Drying Technology, 18(10) (2000) 2327-2349.
[9] S. Syahrul, I. Dincer, F. Hamdullahpur, Thermodynamic modeling of fluidized bed drying of moist particles, International Journal of Thermal Sciences, 42(7) (2003) 691-701.
[10] R.A. Chayjan, K. Salari, Q. Abedi, A.A. Sabziparvar, Modeling moisture diffusivity, activation energy and specific energy consumption of squash seeds in a semi fluidized and fluidized bed drying, Journal of food science and technology, 50(4) (2013) 667-677.
[11] V. Abdolkarimi, Hydrodynamics Modeling of Particulates Coating in a Fluidized Bed, Petroleum & Coal, 56(2) (2014) 165-174.
[12] M. Assari, H.B. Tabrizi, M. Saffar-Avval, Numerical simulation of fluid bed drying based on two-fluid model and experimental validation, Applied thermal engineering, 27(2) (2007) 422-429.
[13] C. Fyhr, I.C. Kemp, Mathematical modelling of batch and continuous well-mixed fluidised bed dryers, Chemical Engineering and Processing: Process Intensification, 38(1) (1999) 11-18.
[14] W. Ramli, W. Daud, A cross-flow model for continuous plug flow fluidized-bed cross-flow dryers, Drying Technology, 25(7-8) (2007) 1229-1235.
[15] B. Abbasi Souraki, Mathematical Modeling of Heat and Mass Transfer during Convective Dehydration of an Anisotropic Cylindrical Foodstuff, Heat Transfer—Asian Research, 44(3) (2015) 257-271.
[16] S. Suherman, S. Priyanto, Drying of Soybean Seeds in Fluidized Bed: Experimental and Scale-up Simulation in Continuous Operation Mode, Advance Journal of Food Science and Technology, 6(3) (2014) 403-407.
[17] N. Parlak, Fluidized bed drying characteristics and modeling of ginger (zingiber officinale) slices, Heat and Mass Transfer, 51(8) (2015) 1085-1095.
[18] M.K. Moraveji, R. Davarnejad, M. Farjami, Investigation of some effective parameters on the fluidized bed grain dryers, Iranica Journal of Energy and Environment, 4(4) (2013) 391-397.
[19] M. Khanali, S. Rafiee, A. Jafari, S.H. Hashemabadi, Experimental investigation and modeling of plug-flow fluidized bed drying under steady-state conditions, Drying Technology, 31(4) (2013) 414-432.