[1] X.-Q. Wang, C. Yap, A.S. Mujumdar, A parametric study of phase change material (PCM)-based heat sinks, International Journal of Thermal Sciences, 47(8) (2008) 1055-1068.
[2] L. Jian-you, Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage, Solar Energy, 82(11) (2008) 977-985.
[3] A. Elgafy, K. Lafdi, Effect of carbon nanofiber additives on thermal behavior of phase change materials, Carbon, 43(15) (2005) 3067-3074.
[4] E.M. Alawadhi, A solidification process with free convection of water in an elliptical enclosure, Energy Conversion and Management, 50(2) (2009) 360-364.
[5] J.M. Khodadadi, L. Fan, H. Babaei, Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review, Renewable and Sustainable Energy Reviews, 24 (2013) 418-444.
[6] J.M. Khodadadi, S.F. Hosseinizadeh, Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage, International Communications in Heat and Mass Transfer, 34(5) (2007) 534-543.
[7] S.Y. Wu, H. Wang, S. Xiao, D.S. Zhu, An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials, Journal of Thermal Analysis and Calorimetry, 110(3) (2012) 1127-1131.
[8] R.L. Hamilton, O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems, Industrial & Engineering Chemistry Fundamentals, 1(3) (1962) 187-191.
[9] M. Faraji, H. El Qarnia, Numerical study of melting in an enclosure with discrete protruding heat sources, Applied Mathematical Modelling, 34(5) (2010) 1258-1275.
[10] S. Kashani, A.A. Ranjbar, M. Abdollahzadeh, S. Sebti, Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity, Heat and Mass Transfer, 48(7) (2012) 1155-1166.
[11] S.F. Hosseinizadeh, A.A.R. Darzi, F.L. Tan, Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container, International Journal of Thermal Sciences, 51 (2012) 77-83.
[12] Y. Zeng, L.-W. Fan, Y.-Q. Xiao, Z.-T. Yu, K.-F. Cen, An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity, International Journal of Heat and Mass Transfer, 66 (2013) 111-117.
[13] M.H. Djavareshkian, A. Karimi, Numerical simulation of water solidification in pipes, Journal of Aerospace 2(3) (2006) 31-40 (in Persian).
[14] E.M. Alawadhi, Phase change process with free convection in a circular enclosure: numerical simulations, Computers & Fluids, 33(10) (2004) 1335-1348.
[15] S.A. Fomin, A.V. Wilchinsky, T.S. Saitoh, Close-Contact Melting Inside an Elliptical Cylinder, Journal of Solar Energy Engineering, 122(4) (2000) 192-195.
[16] Y.M.F. El Hasadi, J.M. Khodadadi, Numerical Simulation of the Effect of the Size of Suspensions on the Solidification Process of Nanoparticle-Enhanced Phase Change Materials, Journal of Heat Transfer, 135(5) (2013) 052901-052901-052911.
[17] M. Mohammadpourfard, Numerical study the effects of magnetic fields on the nano-magnetic non-Newtonian fluid with the electrical conductivity in a vertical channel, Modares Mechanical Engineering 15(11) (2015) 379-389 (in Persian).
[18] D. Zablotsky, A. Mezulis, E. Blums, Surface cooling based on the thermomagnetic convection: Numerical simulation and experiment, International Journal of Heat and Mass Transfer, 52(23) (2009) 5302-5308.
[19] H. Yamaguchi, X.-R. Zhang, X.-D. Niu, K. Yoshikawa, Thermomagnetic natural convection of thermo-sensitive magnetic fluids in cubic cavity with heat generating object inside, Journal of Magnetism and Magnetic Materials, 322(6) (2010) 698-704.
[20] H.C. Brinkman, The Viscosity of Concentrated Suspensions and Solutions, The Journal of Chemical Physics, 20(4) (1952) 571-571.
[21] Y. Feng, H. Li, L. Li, L. Bu, T. Wang, Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method, International Journal of Heat and Mass Transfer, 81 (2015) 415-425.