[1] M. I. Younis, E. M. Abdel-Rahman, and A. H. Nayfeh, Static and dynamic behavior of an electrically excited resonant microbeam, in 43 rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, CO, 2002.
[2] H. M. Ouakad, A. M. Alofi, and A. H. Nayfeh, Dynamic Analysis of Multilayers Based MEMS Resonators, Mathematical Problems in Engineering, 2017.
[3] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations: John Wiley & Sons, 2008.
[4] S. Azizi, M. R. Ghazavi, G. Rezazadeh, I. Ahmadian, and C. Cetinkaya, Tuning the primary resonances of a micro resonator, using piezoelectric actuation, Nonlinear dynamics, 76, (2014) 839-852.
[5] F. Najar, S. Choura, E. Abdel-Rahman, S. El-Borgi, and A. Nayfeh, Dynamics of Variable-Geometry Electrostatic Microactuators, in ASME 2006 International Mechanical Engineering Congress and Exposition, (2006) 273-281.
[6] X. Jia, J. Yang, S. Kitipornchai, and C. W. Lim, Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode, Applied Mathematical Modelling, 36 (2012) 1875-1884.
[7] A. Witvrouw and A. Mehta, The use of functionally graded poly-SiGe layers for MEMS applications, in Materials science forum, (2005) 255-260.
[8] M. Gromova, A. Mehta, K. Baert, and A. Witvrouw, Characterization and strain gradient optimization of PECVD poly-SiGe layers for MEMS applications, Sensors and Actuators A: Physical, 130 (2006) 403-410.
[9] D. Hasanyan, R. Batra, and S. Harutyunyan, Pull-in instabilities in functionally graded microthermoelectromechanical systems, Journal of Thermal Stresses, 31(2008) 1006-1021.
[10] M. Asghari, M. Ahmadian, M. Kahrobaiyan, and M. Rahaeifard, On the size-dependent behavior of functionally graded micro-beams, Materials & Design (1980-2015), 31 (2010) 2324-2329.
[11] X. Jia, J. Yang, S. Kitipornchai, and C. Lim, Forced vibration of electrically actuated FGM micro-switches, Procedia Engineering, 14 (2011) 280-287.
[12] B. Mohammadi-Alasti, G. Rezazadeh, A.-M. Borgheei, S. Minaei, and R. Habibifar, On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure, Composite Structures, 93 (2011) 1516-1525.
[13] M. Rezaee, N. Sharafkhani, and A. Chitsaz, Electrostatically actuated FGM micro-tweezer under the thermal moment, Microsystem technologies, 19 (2013) 1829-1837.
[14] X. Jia, L. Ke, C. Feng, J. Yang, and S. Kitipornchai, Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change, Composite Structures, 133 (2015) 1137-1148.
[15] R. Gholami, R. Ansari, and H. Rouhi, Studying the effects of small scale and Casimir force on the non-linear pull-in instability and vibrations of FGM microswitches under electrostatic actuation, International Journal of Non-Linear Mechanics, 77 (2015) 193-207.
[16] L. C. Trinh, H. X. Nguyen, T. P. Vo, and T.-K. Nguyen, Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory, Composite Structures, 154 (2016) 556-572.
[17] X. Xie, H. Zheng, and H. Yang, Indirect radial basis function approach for bending, free vibration and buckling analyses of functionally graded microbeams, Composite Structures, 131 (2015) 606-615.
[18] N. Fleck, G. Muller, M. Ashby, and J. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, 42 (1994) 475-487.
[19] J. Stölken and A. Evans, A microbend test method for measuring the plasticity length scale, Acta Materialia, 46 (1998) 5109-5115.
[20] M. Attia and S. Mohamed, Nonlinear modeling and analysis of electrically actuated viscoelastic microbeams based on the modified couple stress theory, Applied Mathematical Modelling, 41 (2017) 195-222.
[21] S. K. Lamoreaux, The Casimir force: background, experiments, and applications, Reports on progress in Physics, 68 (2004). 201.
[22] P. Ganguly and G. R. Desiraju, Van der Waals and polar intermolecular contact distances: Quantifying supramolecular synthons, Chemistry–An Asian Journal, 3 (2008) 868-880.
[23] B. D. Agarwal, L. J. Broutman, and K. Chandrashekhara, Analysis and performance of fiber composites: John Wiley & Sons, 2006.
[24] H.-S. Shen, Functionally graded materials: nonlinear analysis of plates and shells: CRC press, 2016.
[25] K. B. Lee, Principles of microelectromechanical systems: John Wiley & Sons, 2011.
[26] M. Eltaher, A. Alshorbagy, and F. Mahmoud, Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams, Composite Structures, 99, (2013) 193-201.
[27] F. Najar, S. Choura, E. M. Abdel-Rahman, S. El-Borgi, and A. Nayfeh, Dynamic analysis of variable-geometry electrostatic microactuators, Journal of micromechanics and microengineering, 16(2006) 2449.
[28] R. Legtenberg and H. A. Tilmans, Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication, Sensors and Actuators A: Physical, 45 (1994) 57-66.
[29] G. Kerschen, M. Peeters, J.-C. Golinval, and A. F. Vakakis, Nonlinear normal modes, Part I: A useful framework for the structural dynamicist, Mechanical Systems and Signal Processing, 23 (2009) 170-194.