[1] K. Guo, D. Lu, S. Chen, W. Lin, X. Lu, The UniTire model: a nonlinear and non-steady-state tyre model for vehicle dynamics simulation, Vehicle system dynamics, 43(1) (2005) 341-358.
[2] W. Kong, Design and Fabrication of A Reduced Scale Tire Test Machine, University Tecnical Malaysia Melaka, 2013.
[3] R. Chaichaowarata, W. Wannasuphoprasit, Tire test for drifting dynamics of a scaled vehicle, Journal of Research and Applications in Mechanical Engineering, 1(3) (2013) 33-39.
[4] K. Guo, D. Lu, UniTire: unified tire model for vehicle dynamic simulation, Vehicle System Dynamics, 45(S1) (2007) 79-99.
[5] S. Garatti, S. Bittanti, Parameter estimation in the Pacejka's tyre model through the TS method, IFAC Proceedings Volumes, 42(10) (2009) 1304-1309.
[6] F. Gustafsson, Slip-based tire-road friction estimation, Automatica, 33(6) (1997) 1087-1099.
[7] W. Grimes, J. Balasa, E. Hunter, T. Vadnais, Extracting Tire Modal Parameters from Test Data SAE Technical Paper, 2006-01-1399 (2006).
[8] V. Cossalter, A. Doria, E. Giolo, L. Taraborrelli, M. Massaro, Identification of the characteristics of motorcycle and scooter tyres in the presence of large variations in inflation pressure, Vehicle System Dynamics, 52(10) (2014) 1333-1354.
[9] P. Lugner, H. Pacejka, M. Plöchl, Recent advances in tyre models and testing procedures, Vehicle System Dynamics, 43(6-7) (2005) 413-426.
[10] A. Alagappan, K. Rao, R. Kumar, A comparison of various algorithms to extract Magic Formula tyre model coefficients for vehicle dynamics simulations, Vehicle System Dynamics, 53(2) (2015) 154-178.
[11] D. Tan, Y. Wang, L. Zhang, Research on the parameter identification of LuGre tire model based on genetic algorithms, in: International Conference on Intelligent Systems and Knowledge Engineering, Atlantis Press, 2007.
[12] C. Canudas-de-Wit, P. Tsiotras, E. Velenis, M. Basset, G. Gissinger, Dynamic friction models for road/tire longitudinal interaction, Vehicle System Dynamics, 39(3) (2003) 189-226.
[13] K. Guo, L. Ren, A unified semi-empirical tire model with higher accuracy and less parameters, SAE transactions, (1999) 1513-1520.
[14] A. Farhat, D. Koenig, D. Hernandez-Alcantara, R. Morales-Menendez, Tire force estimation using a proportional integral observer, Journal of Physics: Conference Series 783(1) (2017) 1-11.
[15] E. Sabbioni, R. Bao, F. Cheli, D. Tarsitano, A particle filter approach for identifying tire model parameters from full-scale experimental tests, Journal of Mechanical Design, 139(2) (2017) 1-7.
[16] Y.H. Liu, T. Li, Y.Y. Yang, X. Ji, J. Wu, Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm, Mechanical Systems and Signal Processing, 88 (2017) 25-35.
[17] J.Y. Wong, Theory of ground vehicles, John Wiley & Sons, New York, 2008.
[18] E. Fiala, Lateral forces on rolling pneumatic tires, Zeitschrift VDI 96(29) (1954) 973-979.
[19] S. Kuntanapreeda, Estimation of Longitudinal Tire Force Using Nonlinearity Observer, Open Journal of Applied Sciences, 3(2) (2013) 41-46.
[20] J. Svendenius, Tire modeling and friction estimation, Lund University, Sweden, 2007.
[21] M. Karari, System Identification, Amirkabir University of Technology Publication, Tehran, 2014.
[22] M. Radac, R. Precup, S. Preitl, J. Tar, E. Petriu, Linear and fuzzy control solutions for a laboratory anti-lock braking system, in: 6th International Symposium on Intelligent Systems and Informatics, IEEE, Subotica, Serbia, 2008, pp. 1-6.
[23] H. Mirzaeinejad, M. Mirzaei, A novel method for non-linear control of wheel slip in anti-lock braking systems, Control Engineering Practice, 18(8) (2010) 918-926.