Inverse Conduction Heat Transfer in a Channel Filled with Porous Material under Local Thermal Non-Equilibrium Condition

Document Type : Research Article

Authors

Abstract

This paper is concerned with the inverse heat transfer between two parallel plates filled with a porous medium under a non-equilibrium condition. Sequential Function Specification Method (SFSM) and Conjugate Gradient Method (CGM) with Adjoint equations are employed to estimate the transient wall heat flux at the porous boundary. Combination of the non-thermal equilibrium model and inverse heat transfer methods is the novelty of this paper. Results showed that sensor locations and existing noise in the measured data have important effects on the calculated heat flux.

Keywords


[1] Prud’homme, M.; Jasmin, S.; ''Inverse solution for a biochemical heat source in a porous medium in the presence of natural convection'', Chemical Engineering Science, vol. 61, pp. 1667-1675, 2006.
[2] Znaidia, S.; Mzali, F.; Sassi, L.; Mhimid, A.; Jemni, A.; Ben Nasrallah, S.; Petit, D.; ''Inverse problem in a porous medium: estimation of effective thermal properties'', Inverse Problems in Science and Engineering, vol. 13:6, pp. 581 – 593, 2005.
[3] Jasmin, S.; Prud’homme, M.; ''Inverse determination of a heat source from a solute concentration generation model in porous medium'', Int. Communications in Heat and Mass Transfer, vol. 32, pp. 43–53, 2005.
[4] Prud’homme, M.; Jiang, H.; ''inverse determination of concentration in porous medium with thermosolutal convection'', International Communications in Heat and Mass Transfer, vol. 30, no. 3, pp. 303-312, 2003.
[5] Prud_homme, M.; Jasmin, S.; ''Determination of a heat source in porous medium with convective mass diffusion by an inverse method'', Int. J. Heat and Mass Transfer, vol. 46, pp. 2065–2075, 2003.
[6] Dantas, L.B.; Orlande, H.R.B.; Cotta, R.M.; ''An inverse problem of parameter estimation for heat and mass transfer in capillary porous media'', Int. J. Heat Mass Transfer, vol. 46, pp. 1587–1598, 2003.
[7] Cheng-Hung Huang; Chun-Ying Yeh; ''An inverse problem in simultaneous estimating the Biot numbers
of heat and moisture transfer for a porous material'', Int. J. Heat Mass Transfer, vol. 45, pp. 4643–4653, 2002.
[8] Prud’homme, M.; Nguyen, Hung; ''Solution of the inverse steady state convection problem in a porous medium by Adjoint equations'', Int. Comm. Heat Mass Transfer, vol. 28, no. 1, pp. 11-21, 2001.
[9] Prud'homme, M.; Jasmin, S.; ''Component analysis of a steady inverse convection problem solution in a porous medium'', Int. Comm. Heat Mass Transfer, vol. 28, no. 7, pp. 911-921, 2001.
[10] Kaviany, M.; Principle of heat transfer in porous media, 2nd ed., Springer, Berlin, 1995.
[11] Alazmi, B.; Vafai, K.; ''Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions'', Int. J. Heat Mass Transfer, vol. 45, pp. 3071–3087, 2002.
[12] Beck, J. V.; Blackwell, B.; Charles R.; Jr. St. Clair; Inverse Heat Conduction: Ill-Posed Problems, Wiley-Interscience, 1985.
[13] Kurpisz, K.; Nowak, A. J.; Inverse Thermal Problems, 2nd ed., Computational Mechanics Publications, Southampton, 1995.
[14] Necati Ozisik, M.; Orlande, H. R. B.; Inverse Heat Transfer-Foundation and Applications, Taylor & Francis, USA, 2000.