[1] Z.X. Lei, K.M. Liew, J.L. Yu, Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method, Composite Structures, 98 (2013) 160-168.
[2] C.-P. Wu, W.-W. Lai, Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method, Physica E: Low-dimensional Systems and Nanostructures, 68 (2015) 8-21.
[3] T. Murmu, M.A. McCarthy, S. Adhikari, Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach, Journal of Sound and Vibration, 331(23) (2012) 5069-5086.
[4] A. Shooshtari, S. Razavi, Nonlinear vibration analysis of rectangular magneto-electro-elastic thin plates, IJE transactions A: Basics, 28(1) (2015) 139-147.
[5] E. García-Macías, R. Castro-Triguero, E.I. Saavedra Flores, M.I. Friswell, R. Gallego, Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates, Composite Structures, 140 (2016) 473-490.
[6] Z. Lang, L. Xuewu, Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells, Applied Mathematical Modelling, 37(4) (2013) 2279-2292.
[7] D. Chen, S. Kitipornchai, J. Yang, Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core, Thin-Walled Structures, 107 (2016) 39-48.
[8] M. Khanjani, M. Shakeri, M. Sedighi, A parametric study on the stress analysis and transient response of thick-laminated-faced cylindrical sandwich panels with transversely flexible core, Aerospace Science and Technology, 48 (2016) 1-20.
[9] R. Ansari, R. Gholami, A. Norouzzadeh, Size-dependent thermo-mechanical vibration and instability of conveying fluid functionally graded nanoshells based on Mindlin's strain gradient theory, Thin-Walled Structures, 105 (2016) 172-184.
[10] M. Nasihatgozar, V. Daghigh, M. Eskandari, K. Nikbin, A. Simoneau, Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes, International Journal of Mechanical Sciences, 107 (2016) 69-79.
[11] A.L. Araújo, V.S. Carvalho, C.M. Mota Soares, J. Belinha, A.J.M. Ferreira, Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators, Composite Structures, 151 (2016) 91-98.
[12] L.W. Zhang, Z.X. Lei, K.M. Liew, Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method, Composite Structures, 120 (2015) 189-199.
[13] M. Arefi, A.M. Zenkour, Thermo-electro-magneto-mechanical bending behavior of size-dependent sandwich piezomagnetic nanoplates, Mechanics Research Communications, 84 (2017) 27-42.
[14] P. Zhu, Z.X. Lei, K.M. Liew, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures, 94(4) (2012) 1450-1460.
[15] M. Mohammadimehr, S. Okhravi, S. Akhavan Alavi, Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT, Journal of Vibration and Control, 24(8) (2018) 1551-1569.
[16] A. Ghorbanpour Arani, A.R. Shajari, S. Amir, A. Loghman, Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid, Physica E: Low-dimensional Systems and Nanostructures, 45 (2012) 109-121.
[17] M. Mohammadimehr, M. Mohandes, M. Moradi, Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory, Journal of vibration and control, 22(7) (2016) 1790-1807.
[18] M. Mohammadimehr, B. Rousta Navi, A. Ghorbanpour Arani, Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT, Composites Part B: Engineering, 87 (2016) 132-148.
[19] R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, S. Sahmani, Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Composite Structures, 100 (2013) 385-397.
[20] R. Akbari Alashti, M. Khorsand, Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled, International Journal of Pressure Vessels and Piping, 96-97 (2012) 49-67.
[21] A. Ghorbanpour Arani, M. Abdollahian, R. Kolahchi, Nonlinear vibration of a nanobeam elastically bonded with a piezoelectric nanobeam via strain gradient theory, International Journal of Mechanical Sciences, 100 (2015) 32-40.
[22] A. Kutlu, M. Hakkı Omurtag, Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method, International Journal of Mechanical Sciences, 65(1) (2012) 64-74.
[23] M. Mohammadimehr, H. Mohammadi Hooyeh, H. Afshari, M. Salarkia, Size-dependent Effects on the Vibration Behavior of a Ti-moshenko Microbeam subjected to Pre-stress Loading based on DQM, Mechanics of Advanced Composite Structures , 3(2) (2016) 99-112.
[24] A. Paul, D. Das, Free vibration analysis of pre-stressed FGM Timoshenko beams under large transverse deflection by a variational method, Engineering Science and Technology, an International Journal, 19(2) (2016) 1003-1017.
[25] A.G. Arani, V. Atabakhshian, A. Loghman, A. Shajari, S. Amir, Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method, Physica B: Condensed Matter, 407(13) (2012) 2549-2555.
[26] M. Mohammadimehr, B. Rousta Navi, A. Ghorbanpour Arani, Surface stress effect on the nonlocal biaxial buckling and bending analysis of polymeric piezoelectric nanoplate reinforced by CNT using Eshelby-Mori-Tanaka approach, Journal of Solid Mechanics,7(2) (2015) 173-190.
[27] H.-T. Thai, T.P. Vo, A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory, Composite Structures, 96 (2013) 376-383.
[28] L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory, Journal of Sound and Vibration, 331(1) (2012) 94-106.
[29] M. Ahmadi, R. Ansari, H. Rouhi, Multi-scale bending, buckling and vibration analyses of carbon fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes, Physica E: Low-Dimensional Systems and Nanostructures, 93 (2017) 17-25.
[30] R. Gholami, R. Ansari, Y. Gholami, Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams, Composite Structures, 174 (2017) 45-58.
[31] K. Kiani, Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects, Physica E: Low-dimensional Systems and Nanostructures, 42(9) (2010) 2391-2401.
[32] F. Daneshmand, M. Rafiei, S. Mohebpour, M. Heshmati, Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory, Applied Mathematical Modelling, 37(16-17) (2013) 7983-8003.
[33] Y.T. Beni, F. Mehralian, M.K. Zeverdejani, Size-dependent buckling analysis of different chirality SWCNT under combined axial and radial loading based on orthotropic model, Materials Research Express, 4(6) (2017) 065004.
[34] H. Razavi, A.F. Babadi, Y.T. Beni, Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory, Composite Structures, 160 (2017) 1299-1309.
[35] J. Mantari, J. Monge, Buckling, free vibration and bending analysis of functionally graded sandwich plates based on an optimized hyperbolic unified formulation, International Journal of Mechanical Sciences, 119 (2016) 170-186.