بررسی کمانش پوسته استوانه‌ای با بکارگیری سوپرالمان جدید وابسته به اثر اندازه

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

در این مقاله با استفاده از تئوری تنش کوپل اصلاح شده به معرفی المان جدید پوسته استوانه ای پرداخته شده است. از آنجا که تئوری کلاسیک قادر به محاسبه صحیح سختی و احتساب اثر اندازه در سازه های میکرو/نانو نمی باشد، تئوری‌های مرتبه بالاتر مانند تئوری تنش کوپل اصلاح شده بسیار مورد توجه قرار گرفته است. در این مقاله با استفاده از تئوری تنش کوپل اصلاح شده و با استفاده از مدل پوسته به جای مدل تیر، کمانش نانو لوله‌ها با استفاده از روش اجزاء محدود مورد بررسی قرار گرفته است. المان جدید براساس توابع شکل سوپر المان‌ها تعریف و ماتریس جرم و سختی بدست آمده است. علاوه بر سوپر المان پوسته استوانه‌ای تئوری تنش کوپل اصلاح شده، سوپر المان پوسته استوانه‌ای کلاسیک با فرض اثر اندازه صفر در روابط بدست آمده، قابل تعریف می باشد. در حالت خاص، به منظور بررسی کاربرد روابط بدست آمده کمانش نانو پوسته استوانه ای با استفاده از المان پوسته استوانه‌ای تئوری تنش کوپل اصلاح شده مورد مطالعه قرار گرفته و درستی نتایج با استفاده از نتایج بدست آمده از روش تحلیلی نشان داده شده و تاثیر پارامترهایی نظیر اثر اندازه، طول و ضخامت بر کمانش پوسته استوانه ای بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Buckling investigation of cylindrical shell using size-dependent new super element

نویسندگان [English]

  • Iman Soleimani
  • Yaghoob Tadi Bani
  • Mohsen Botshekanan Dehkordi
دانشجوی دکتری
چکیده [English]

In this paper, using modified couple stress theory, a new cylindrical shell element is introduced. Since classical continuum theory is unable to correctly compute stiffness and account for size effects in micro/nanostructures, higher order continuum theories such as modified couple stress theory have taken on great appeal. In this paper, using modified couple stress theory and using shell model in place of beam model, buckling of nanotubes is investigated via the finite element method. The new cylindrical shell element based on super element’s shape function defined and the mass-stiffness matrix has been developed. In addition to modified couple stress cylindrical shell element, the classical cylindrical shell super element can also be defined by setting size effects parameter to zero in the equations. In special cases, in order to investigate the application of the equations developed, the cylindrical nanoshell buckling is studied using modified couple stress cylindrical shell element and the results are validated using the analytical method. In addition, the effects of parameters such as size effects parameter, length, and thickness on cylindrical shell buckling are investigated.

کلیدواژه‌ها [English]

  • Modified Couple Stress Theory
  • finite element
  • size effects
  • shell model
  • Buckling
[1]  B. Arash, R. Ansari, Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain, Physica E, Vol. 42, pp. 2058 –2064, 2010.
[2]  S. Sahmani, R. Ansari, On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory, Composite Structures, Vol. 95, pp. 430–442, 2013.
[3]  B. Zhang, Y. He, D. Liu, Z. Gan, L. Shen, Non-classical Timoshenko beam element based on the strain gradient elasticity theory, Finite Elements in Analysis and Design, Vol. 79, pp. 22 – 39, 2014.
[4]  M. Şimşek, Nonlinear Static and Free Vibration Analysis of Microbeams Based on the Non-linear Elastic Foundation Using Modified Couple Stress Theory and He’s Variational Method, Composite Structures, Vol. 112, , pp. 264-272, 2014.
[5]  M. H. Ghayesh, H. Farokhi, M. Amabili, Nonlinear dynamics of a microscale beam based on the modified couple stress theory, Composites: Part B: Engineering, Vol. 50, pp. 318–324, 2013.
[6]  M. Mohammadimehr, M. Mohandes, The Effect of Modified Couple Stress Theory on Buckling and Vibration Analysis of Functionally Graded Double-Layer Boron Nitride Piezoelectric Plate Based on CPT, Journal of Solid Mechanics, Vol. 7, No. 3, pp. 281-298, 2015.
[7]  A. Ghorbanpour Arani, M. Abdollahian, R. Kolahchi, Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory, Polymer Composites, Vol. 36, No. 7, pp. 1314-1324, 2015.
[8]  R. A. Toupin, Elastic materials with couple stresses, Arch.Rational Mech.Anal, Vol. 11, pp. 385–414, 1962.
[9]  R. D. Mindlin, H. F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Rational Mech. Anal, Vol. 11, pp. 415–448, 1962.
[10]  W. T. Koiter, Couple stresses in the theory of elasticity, I and II.Proc.K.Ned.Akad.Wet.(B), Vol. 67, pp. 17–44, 1964.
[11] R. D. Mindlin, Micro-structure in linear elasticity, Arch.Rational Mech.Anal.Vol. 16, pp. 51–78, 1964.
[12] F. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, Couple stress Based Strain gradient theory for elasticity, Int.J.Solids Struct, Vol. 39, pp. 2731–2743, 2002.
[13] K. Shengli, Z. Shenjie, Z. Nie, K. Wang, The size-dependent natural frequency of Bernoulli–Euler micro-beams, J Eng Sci, Vol. 46, pp. 427–37, 2008.
[14] J. N. Reddy, J. Berry, Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress, Compos Struct,Vol. 94, pp. 3664-3668, 2012.
[15]  A. Ghorbanpour Arani, M. R. Bagheri, R. Kolahchi, Z. Khoddami Maraghi, Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory, Journal of Mechanical Science and Technology, Vol. 27, No. 9, pp. 2645-2658, 2013.
[16] F. Pampaloni, E. L. Florin, Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials, Trends Biotechnol, Vol. 26, pp. 302–310, 2008.
[17]  H. G. Craighead, Nanoelectromechanical systems, Science, Vol. 290, pp. 1532–1535, 2000.
[18] M. Li, H. X. Tang, M. L. Roukes, Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications, Nat. Nanotech-nol. Vol. 2, pp. 114–120, 2007.
[19]M. Rahaeifard, M. H. Kahrobaiyan, M. T. Ahmadian, Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials, ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, California, USA, August 30–September 2, 2009.
[20]  Y. Tadi Beni, A. Koochi, M. Abadyan, Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS, Phys E,Vol. 43, pp. 979-988, 2011.
[21]  M. Şimşek, J. N. Reddy, Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory, Int J of Eng Sci, Vol. 64, pp. 37–53, 2013.
[22] J. Abdi, A. Koochi, A.S. Kazemi, M. Abadyan, Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory, Smart Mater and Struct, Vol. 20, pp. 11-55, 2011.
[23] M. Şimşek, Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory, Int J of Eng Sci, Vol. 48 No. 12, pp. 1721-1732, 2010.
[24] B. Akgöz, Ö. Civalek, Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory, Composite Structures, Vol. 98, pp. 314-322, 2013.
[25]  M. Mohammad-Abadi, A. R. Daneshmehr, Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions, International Journal of Engineering Science, Vol. 74, pp. 1-14, 2014.
[26]  Y. G. Wang, W. H. Lin, N. Liu, Nonlinear free vibration of a microscale beam based on modified couple stress theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 47, pp. 80-85, 2013.
[27]  Y. Tadi Beni, A. Koochi, M. R. Abadyan, Using modified couple stress theory for modeling the size dependent pull-in instability of torsional nano-mirror under Casimir force, Int J of Optomechatronics, Vol. 8, pp. 47-71, 2014.
[28] R. Li, G. A. Kardomateas, Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model, Journal of Applied Mechanics, Vol. 74, No. 6, pp. 1087-1094, 2007.
[29] H. Zeighampour, Y. Tadi Beni, Cylindrical thin-shell model based on modified strain gradient theory, International Journal of Engineering Science, Vol. 78, pp. 27–47, 2014.
[30] H. Zeighampour, Y. Tadi Beni, Analysis of conical shells in the framework of coupled stresses theory, International Journal of Engineering Science, Vol. 81, pp. 107-122, 2014.
[31] F. Mehralian, Y. Tadi Beni, Size-dependent torsional buckling analysis of functionally graded cylindrical shell, Composites, Part B, Vol. 94, pp. 11-25, 2016.
[32] F. Mehralian, Y. Tadi Beni, R. Ansari, On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure, International Journal of Mechanical Sciences, Vol. 119,  pp. 155-169, 2016.
[33]S. Sahmani, R. Ansari, R. Gholami, A. Darvizeh, Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory, Composites: Part B, Vol. 51, pp. 44–53, 2013.
[34] A. Ghorbanpour Arani, S. Amir, A. R. Shajari, M. R. Mozdianfard, Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory, Composites Part B: Engineering, Vol. 43, No. 2, pp. 195-203, 2012.
[35] H. Zeighampour, Y. Tadi Beni, Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 61, pp. 28-39, 2014.
[36] D. H. Wu, W. T. Chien, C. J. Yang, Y. T. Yen, Coupled- field analysis of piezoelectric beam actuator using FEM, Sens Actuators A, Vol. 118, pp. 171–176, 2005.
[37] R. A. Coutu, P. E. Kladitis, L. A. Starman, J. R. Reid, A comparison of micro-switch analytic, finite element, and experimental results, Sens Actuators A,Vol. 115, pp. 252–258, 2004.
[38] F. Chapuis, F. Bastien, J. F. Manceau, F. Casset, P. L. Charvet, FEM modelling of Piezo-actuated microswitches, In: Seventh international conference on thermal, mechanical and multiphysics simulation and experiments in micro-electronics and micro-systems, EuroSime 2006, IEEE; April 24-26, 2006.
[39]         B. Zhang, Y. He, D. Liu , Z. Gan, L. Shen, A non-classical Mindlin plate finite element based on a modified couple stress theory, European Journal of Mechanics A/Solids, Vol. 42, pp. 63-80, 2013.
[40] M. H. Kahrobaiyan, M. Asghari , M. T. Ahmadian, A Timoshenko beam element based on the modi fied couple stress theory, International Journal of Mechanical Sciences, Vol. 79, pp. 75–83, 2014.
[41] P. Metz, G. Alici, G. M. Spinks, A finite element model for bending behaviour of conducting polymer electromechanical actuators, Sens Actuators A, Vol. 130, pp. 1–11, 2006.
[42]S. A. Tajalli, M. Moghimi Zand, M.T. Ahmadian, Effect of geometric nonlinearity on dynamic pull-in behavior of coupled-domain microstructures based on classical and shear deformation plate theories, Eur J Mech A Solids, Vol. 28, pp. 916 –9 25, 2009.
[43] J. Jiang, M. D. Olson, Nonlinear analysis of orthogonally stiffened cylindrical shells by a super element approach, Finite elements in Analysis and Design, Vol. 18, No. 1, pp. 99-110, 1994.
[44] S. A. Lukasiewicz, Geometrical super-elements for elasto-plastic shells with large deformation, Finite Elements in Analysis and design, Vol. 3, No. 3, pp. 199-211, 1987.
[45]         T. S. Koko, M. D. Olson, Vibration analysis of stiffened plates by super elements, Journal of Sound and Vibration, Vol. 158, No.1, pp. 149-167, 1992.
[46] M. T. Ahmadian, M. Sherafati Zangeneh, Vibration analysis of orthotropic rectangular plates using superelements, Computer methods in applied mechanics and engineering, Vol. 191, No. 19, pp. 2097-2103, 2002.
[47] M.T. Ahmadian, M. Bonakdar, A new cylindrical element formulation and its application to structural analysis of laminated hollow cylinders, Finite Elements in Analysis and Design, Vol. 44, pp. 617–630, 2008.
[48]  A.W. Leissa, Vibration of shells, published for the Acoustical Society of America through the American Institute of Physics, 1993.
[49]   R. Gholami, R. Ansari, A. Darvizeh, S. Sahmani, Axial Buckling and Dynamic Stability of Functionally Graded Microshells Based on the Modifed Couple Stress Theory, International Journal of Structural Stability and Dynamics, Vol. 15, No. 4, pp. 1450070-94 2014.