تعیین سرعت‌های بحرانی و مرزهای ناپایداری واگرایی برای یک سیستم سیاره‌ای دومارپیچ سرعت بالا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

2 دانشکده مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

چکیده

سیستم‌های سیاره‌ای سرعت بالا، یا به عبارت کلی‌تر، سیستم‌های ژیروسکوپی، پایستار انرژی نمی‌باشند، بنابراین در معرض ناپایداری قرار دارند. در این تحقیق پس از استخراج معادلات دینامیکی حاکم بر سیستم سیاره‌ای دومارپیچ در فضای سه بعدی و با در نظر گرفتن شش درجه آزادی برای هر عضو به بررسی پایداری در محدوده سرعت‌های بحرانی سیستم پرداخته می‌شود. در استخراج معادلات، سفتی درگیری به صورت ثابت فرض شده و اثرات ژیروسکوپی ناشی از دوران بازو در نظر گرفته می‌شود. سرعت‌های بحرانی سیستم‌های ژیروسکوپی در سرعت‌هایی رخ می‌دهد که در آن یک یا تعداد بیشتری از فرکانس‌های طبیعی سیستم برابر صفر می‌شود. برای محاسبه سرعت‌های بحرانی، مسأله مقدار ویژه سیستم از طریق روش‌های عددی حل می‌گردد.  به منظور صحت سنجی معادلات و همچنین روند استخراج سرعت‌های بحرانی سیستم، نتایج استخراج شده برای یک سیستم سیاره‌ای ساده سرعت بالا با نتایج تحقیق موجود در این زمینه مقایسه می‌گردد.  در پایان با رسم نمودارهای مربوط به تغییرات قسمت‌های حقیقی و موهومی مقادیر ویژه سیستم سیاره‌ای دومارپیچ در مقابل بازه‌ای از سرعت‌های بازو، پایداری سیستم در نزدیکی سرعت‌های بحرانی مورد بررسی قرار می‌گیرد. نتایج تحقیق حاضر نشان می‌دهد که سیستم سیاره‌ای دومارپیچ در بعضی از سرعت‌های بحرانی پایدار و در برخی دیگر در معرض ناپایداری واگرایی قرار دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Critical Speeds and Divergence Instability Boundary for a High- Speed Double- Helical Planetary Gear System

نویسندگان [English]

  • M. Karimi Khoozani 1
  • M. PourSina 2
  • A. pourkamali anaraki 1
1 Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
2 Department of Mechanical Engineering, University of Isfahan, Isfahan, Iran
چکیده [English]

High-speed planetary gears, or more generally, gyroscopic systems are not preserve energy and therefore subjected to instability. In this research, the dynamic equations for double- helical planetary gear system in 3-D space and considering 6-DOF for each member are extracted. Then, the system stability in the range of critical speed is investigated. In the extraction of equations, the constant mesh stiffness is assumed and the gyroscopic effects due to rotating carrier are considered. The critical speeds of gyroscopic systems occur at speeds in which one or more natural frequencies are zero. To calculate the critical speeds, the eigenvalue problem of the system is solved by numerical methods. In order to validate the equations and the process of extraction of critical speed, the obtained results for a high-speed spur planetary gear system are compared with the results of the existing research. Finally, by plotting the variations of the real and imaginary parts of the Eigenvalues of the double-helical planetary gear system versus a range of carrier speeds investigate the system stability near critical speeds. The results of the current study indicate that the double- helical planetary gear system is stable at some critical speeds and in others subjected to divergence instability.

کلیدواژه‌ها [English]

  • Critical speeds
  • Divergence instability
  • Double- helical planetary gear system
  • Gyroscopic effects
  • High- speed
[1] S. Tobias, R. Arnold, The influence of dynamical imperfection on the vibration of rotating disks, Proceedings of the Institution of Mechanical Engineers, 171(1) (1957) 669-690.
[2] M. Benton, A. Seireg, Simulation of resonances and instability conditions in pinion-gear systems, Journal of Mechanical Design, 100(1) (1978) 26-32.
[3] C.G. Cooley, R.G. Parker, Mechanical stability of high-speed planetary gears, International Journal of Mechanical Sciences, 69 (2013) 59-71.
[4] J. Wickert, C. Mote, Classical vibration analysis of axially moving continua, Journal of Applied Mechanics, 57(3) (1990) 738-744.
[5] R. Parker, Supercritical speed stability of the trivial equilibrium of an axially-moving string on an elastic foundation, Journal of Sound and Vibration, 221(2) (1999) 205-219.
[6] R.P. Han, J.-Z. Zu, Modal analysis of rotating shafts: a body-fixed axis formulation approach, Journal of Sound and Vibration, 156(1) (1992) 1-16.
[7] J.-S. Chen, D. Bogy, Effects of load parameters on the natural frequencies and stability of a flexible spinning disk with a stationary load system, Journal of Applied Mechanics, 59(2S) (1992) S230-S235.
[8] C. Mote Jr, Stability of circular plates subjected to moving loads, Journal of the Franklin Institute, 290(4) (1970) 329-344.
[9] A.A. Renshaw, C. Mote, Absence of one nodal diameter critical speed modes in an axisymmetric rotating disk, Journal of applied mechanics, 59(3) (1992) 687-688.
[10] W. Iwan, T. Moeller, The stability of a spinning elastic disk with a transverse load system, Journal of Applied Mechanics, 43(3) (1976) 485-490.
[11] R.M. Khorasany, S.G. Hutton, The effect of axisymmetric nonflatness on the oscillation frequencies of a rotating disk, Journal of Vibration and Acoustics, 132(5) (2010) 051012.
[12] C. D'Angelo III, C. Mote Jr, Natural frequencies of a thin disk, clamped by thick collars with friction at the contacting surfaces, spinning at high rotation speed, Journal of Sound and Vibration, 168(1) (1993) 1-14.
[13] R.M. Khorasany, S.G. Hutton, Vibration Characteristics of Rotating Thin Disks—Part I: Experimental Results, Journal of Applied Mechanics, 79(4) (2012) 041006.
[14] R. Parker, P. Sathe, Free vibration and stability of a spinning disk-spindle system, Journal of Vibration and Acoustics, 121(3) (1999) 391-396.
[15] R. Parker, P. Sathe, Exact solutions for the free and forced vibration of a rotating disk-spindle system, Journal of Sound and Vibration, 223(3) (1999) 445-465.
[16] P. Sondkar, A. Kahraman, A dynamic model of a double-helical planetary gear set, Mechanism and Machine Theory, 70 (2013) 157-174.
[17] P.B. Sondkar, Dynamic modeling of double-helical planetary gear sets, The Ohio State University, 2012.
[18] M. K Khoozani, M. Poursina, A. P Anaraki, Study of gyroscopic effects on the dynamics and vibrations of double-helical planetary gear set, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 232(2) (2018) 199-223.
[19] M. Kubur, A. Kahraman, D. Zini, K. Kienzle, Dynamic analysis of a multi-shaft helical gear transmission by finite elements: model and experiment, Journal of vibration and acoustics, 126(3) (2004) 398-406.
[20] M. Kang, A. Kahraman, An experimental and theoretical study of the dynamic behavior of double-helical gear sets, Journal of Sound and Vibration, 350 (2015) 11-29.
[21] M.R. Kang, A. Kahraman, Measurement of vibratory motions of gears supported by compliant shafts, Mechanical Systems and Signal Processing, 29 (2012) 391-403.