The Effect of Calcium Carbonate Nanoparticles and Compatibilizer on the Surface Roughness and the Surface Scratch Resistance of the Polyamide 6

Document Type : Research Article

Authors

.Sc. student, Department of Mechanical Engineering, Tabriz Branch, Islamic Azad University

Abstract

Due to the widespread use of polyamides in various industries and the need to achieve high resistance to surface scratches and optimum surface roughness, in this paper, surface roughness and surface scratch resistance of polyamide 6 reinforced with nanoparticles of calcium carbonate and maleated polyamide as compatibilizer based nanocomposites specimens have been investigated. For this purpose, components of nanocomposite specimens, with the different weight of nanoparticles of calcium carbonate, by twin coil extruder mixture and specimens by the method of injection molding were prepared. To perform the hardness scratch test, the nano-coupled hardness device was used in the atomic force microscope, which has a nanoscale test instrument equipped. In order to study the roughness and surface scratch resistance of the specimens, the effect of three variables, vertical force of the scratch, the weight of the reinforcing phase and the compatibilizer have been investigated. The results show that the addition of calcium nano carbonate particles from one to three parts per hundred resin, increases the roughness value by about two times, and also reduces the surface roughness by about a 40 percent reduction in the weight of a compatibilizer.

Keywords

Main Subjects


[1]  R. L. Browning, H. Jiang, H. -J. Sue, Scratch behavior of polymeric materials, Tribology and Interface Engineering Series, Vol. 55, pp. 354-373, 2008.
[2]  B. J. Briscoe, P. D. Evans, E. Pelillo, S. K. Sinha, “Scratching maps for polymers”, Wear, Vol. 200, pp. 137-147, 1996.
[3]  J. John Rajesh, Jayashree Bijwe , Investigations on scratch behaviour of various polyamides , Wear , Vol. 259, pp. 661-668, 2005.
[4]  Srinath,G. Nanamoorthy,R, Sliding wear performance of Polyamid6-clay nano composites in water, composites Science and Technology,Vol. 67, pp. 399-405, 2007.
[5]  S. K. Sinha, T. Song, X. Wan, Y. Tong, Scratch and normal hardness characteristics of polyamide 6/nano- clay composite, Wear, Vol. 266, pp. 814-821, 2009.
[6]  Mohd. I, Kusmono, Chow,W. S. Takeichi,T. Ro-chmadi, Effect of organoclay modification on themechanical, morphology, and thermal properties of injectionmolded polyamide 6 / polypropylene / montmorillonite Nanocomposites, Proceedings of the Polymer Processing Society 24th Annual Meeting (PPS-24), Salerno (Italy) June 15-19, 2008.
[7]Luis F. Giraldo , Witold Brostow , Eric Devaux, Betty L. Lopez , and Leon D. Perez. Scratch and Wear Resistance of Polyamide 6 Reinforced with Multiwall Carbon Nanotubes , Nanoscience and Nanotechnology , Vol. 8, pp. 1–8, 2008.
[8] A. Nozad. R. Mohsenzadeh. S. M. Nurani, Experimental Study on the Water Absorption and Tribological Properties Of PA6/CaCO3 Nanocomposites, Mechanic modares, Vol. 5, pp114-118, 2014.( In Persian)
[9]  N. Bazubandi. S. M. Zabajad. S. A. Sajadi, The scratch resistance of polyethylene and composites reinforced with nanoparticles of calcium carbonate, Novin, Vol. 2, pp. 79-92, 2013. (In Persian)
[10]  M. Tanniru, R. D. K. Misra, K. Berbrand, D. Murphy, The determining role of calcium carbonate on surface deformation during scratching of calcium carbonate- reinforced polyethylene composites, Mater. Sci. Eng. A, Vol. 404, pp. 208-220, 2005.
[11]   Y. Rong, Z. Wei, Zh. Hai, Z. Gui, T. Zhi, Thermal behavior,dynamic mechanical properties of PBS/CaCo3 Nano, Polymer Testing. Vol. 42, pp. 160-167, 2015.
[12]    R. Mohsenzadeh, K. Sheleshnejad, M. Soltanzadeh Firoz Salari, S. Montakhabi, Influence of calcium carbonate nanoparticles on wear behavior of PA6 / PP / Nano CaCo3 nanocomposites. New Materials, Vol. 6, No.4, pp. 95-105, 2016.(In Persian)
[13]    M. Parvinzadeh, S. Moradian, A. Rashidi, M. E. Yazdanshenas, Surface characterization of polyethylene terephthalate/silica nanocomposites, Applied Surface Science. Vol. 256, pp. 2792-2802, 2010.
[14]    M. Parvinzadeh, S. Moradian, A. Rashidi, M. E. Yazdanshenas, Effect of the Addition of Modified Nanoclays on the Surface Properties of the Resultant Polyethylene Terephthalate/Clay Nanocomposites, Polymer-plastics technology and engineering, Vol. 49, pp. 874-884, 2010.
[15]   H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, J. L. White, J.W. Cho, D. R. Paul, Effect of melt processing conditions on the extent of exfoliation in organoclay- based nanocomposites. Polymer, Vol. 42, pp. 9513-9522, 2001.
[16]  Rakesh K. Gupta, Elliot Kennel, Polymer nanocomposites handbook, CRC Press, 2010.
[17]  G. Pritchard, Plastics Adittives. UK, Rapra Technology Limited. 4,43, 2005.
[18]     K. Gahr, Microstructure and Wear of Materials. Amsterdam. Elsevier. pp. 80-105, 1987.
[19]  S. Sahebian, S. M. Zebarjad, S. A. Sajjadi, Z. Sherafat, and A. Lazzeri, Effect of Both Uncoated and Coated Calcium Carbonate on Fracture Toughness of HDPE/ CaCO3 Nanocomposites, J. App. Poly. Sci., Vol. 104, pp. 3688-3694, 2007.