[1] S. Shaaban and J. R. Seume, Analysis of turbocharger non-adiabatic performance, Turbochargers and Turbocharging, pp. 119–130, 2006.
[2] S. Shaaban, Experimental investigation and extended simulation of turbocharger non-adiabatic performance, Msc thesis. 2004.
[3] B. Sirakov and M. Casey, Evaluation of heat transfer effects on turbocharger performance, J. Turbomach., vol. 135, no. 2, p. 21011, 2013.
[4] N. Baines, K. D. Wygant, and A. Dris, The analysis of heat transfer in automotive turbochargers, J. Eng. Gas Turbines Power, vol. 132, no. 4, p. 42301, 2010.
[5] A. Romagnoli and R. Martinez-Botas, Heat transfer on a turbocharger under constant load points, in ASME Turbo Expo 2009: Power for Land, Sea, and Air, pp. 163–174, 2009.
[6] A. Romagnoli and R. Martinez-Botas, Heat transfer analysis in a turbocharger turbine: An experimental and computational evaluation, Appl. Therm. Eng., vol. 38, pp. 58–77, 2012.
[7] H. Aghaali, On-engine turbocharger performance considering heat transfer. KTH Royal Institute of Technology, Msc thesis, 2012.
[8] H. Aghaali and H.-E. Angstrom, Improving turbocharged engine simulation by including heat transfer in the turbocharger, SAE Technical Paper, 2012.
[9] H. Aghaali, H.-E. Ångström, and J. R. Serrano, Evaluation of different heat transfer conditions on an automotive turbocharger, Int. J. Engine Res., vol. 16, no. 2, pp. 137–151, 2015.
[10] P. Olmeda, V. Dolz, F. J. Arnau, and M. A. Reyes-Belmonte, Determination of heat flows inside turbochargers by means of a one dimensional lumped model, Math. Comput. Model., vol. 57, no. 7, pp. 1847–1852, 2013.
[11] J. Serrano, P. Olmeda, F. Arnau, and A. Dombrovsky, General procedure for the determination of heat transfer properties in small automotive turbochargers, SAE Int. J. Engines, vol. 8, no. 2014–01–2857, pp. 30–41, 2014.
[12] J. R. Serrano, P. Olmeda, F. J. Arnau, M. A. Reyes-Belmonte, and H. Tartoussi, A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients, Appl. Therm. Eng., vol. 89, pp. 587–599, 2015.
[13] F. Payri, P. Olmeda, F. J. Arnau, A. Dombrovsky, and L. Smith, External heat losses in small turbochargers: Model and experiments, Energy, vol. 71, pp. 534–546, 2014.
[14] M. Reyes-Belmonte, Contribution to the experimental characterization and 1-D modelling of turbochargers for IC Engines, PhD, Dep. Máquinas y Mot. Térmicos, Univ. Politècnica València, València, 2013.
[15] J. R. Serrano, P. Olmeda, F. J. Arnau, A. Dombrovsky, and L. Smith, Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes, Energy, vol. 86, pp. 204–218, 2015.
[16] A. Diango, C. Perilhon, G. Descombes, and E. Danho, Application of exergy balances for the optimization of non-adiabatic small turbomachines operation, Energy, vol. 36, no. 5, pp. 2924–2936, 2011.
[17] L. M. G.-C. González, Experiments and Modelling of Automotive Turbochargers under Unsteady Conditions, Phd thesis, 2015.
[18] M. Deligant, P. Podevin, and G. Descombes, CFD model for turbocharger journal bearing performances, Appl. Therm. Eng., vol. 31, no. 5, pp. 811–819, 2011.
[19] F. Payri, J. R. Serrano, P. Olmeda, A. Paez, and F. Vidal, Experimental methodology to characterize mechanical losses in small turbochargers, in ASME Turbo Expo 2010: Power for Land, Sea, and Air, pp. 413–423, 2010.
[20] J. R. Serrano, P. Olmeda, A. Tiseira, L. M. García-Cuevas, and A. Lefebvre, Theoretical and experimental study of mechanical losses in automotive turbochargers, Energy, vol. 55, pp. 888–898, 2013.
[21] D. Bohne, S. Fischer, and E. Obermeier, Thermal, Conductivity, Density, Viscosity, and Prandtl‐Numbers of Ethylene Glycol‐Water Mixtures, Berichte der Bunsengesellschaft für Phys. Chemie, vol. 88, no. 8, pp. 739–742, 1984.
[22] A. J. Torregrosa, P. Olmeda, J. Martin, and C. Romero, A tool for predicting the thermal performance of a diesel engine, Heat Transf. Eng., vol. 32, no. 10, pp. 891–904, 2011.
[23] J. R. Serrano, P. Olmeda, F. J. Arnau, A. Dombrovsky, and L. Smith, Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers, J. Eng. Gas Turbines Power, vol. 137, no. 2, p. 21901, 2015.
[24] T. L. Bergman and F. P. Incropera, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
[25] S. W. Churchill and M. Bernstein, A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow, ASME, Trans. Ser. C-Journal Heat Transf., vol. 99, pp. 300–306, 1977.
[26] D. E. Bornside and R. A. Brown, View factor between differing-diameter, coaxial disks blocked by a coaxial cylinder, J. Thermophys. heat Transf., vol. 4, no. 3, pp. 414–416, 1990.
[27] M. F. Modest, Radiative heat transfer. Academic press, 2013.
[28] G.-P. U. Manual, GT-SuiteTM Version 6.1, Gamma Technol., 2004.