[1] Strouhal, V., “Ueber eine besondere art der tonenegung”, Annalen der Physik und Chemie (Leipzig) Series 3. 5. (1878): pp. 216-251.
[2] Rayleigh, L., “Acoustical observations II”, Philosophical Magazine. 7.( 1879): pp. 149-162.
[3] Bernard, H., “Formation des centres de giration a I’arriere d’un obstacle en mouvement”, Compte rendu hebdomuduire des seances de l’Academie des Sciences, Paris 147. (1908): pp. 839-842.
[4] Karman, T. V., Rubach, H., “Uber den mechanismus des flussigkeits- und luftwiderstandes”, Physikufische Zeitschrifi, 13. (1912): pp. 49-59.
[5] Kruger, F. V., Lauth, A., “Theorie der hiebtone”. Annulen der Physik (Leipzig), 44, (1914): pp. 801- 812.
[6] Borne, R. D., As quoted in reference[9], Zeitschrift Hugtechnik. Vol.3, 30.
[7] Rayleigh, L., “Aeolian tones”. Philosophical Magazine. 29, (1915): pp. 434-444.
[8] Relf, E. F., “On the sound emitted by wires of circular section when exposed to an air current”. Philosophical Magazine. 42. (1921): pp. 173-176.
[9] Richardson, E. G., “Aeolian tones”, Proceedings of the Physical Society of London, .36. (1923-1924):153-157.
[10] Davis, M. R., Pan, N. H., “Noise generation by the interaction of turbulent jets with circular cylinder”, Journal sound and vibration, 3. (1989): pp. 427-442.
[11] Hutcheson, F. V., Brooks, T.F., “Noise radiation from single and multiple rod configurations”. International Journal of Aeroacoustics, 11(3&4).)(012):291–334.
[12] Pillips, O. M., “The intensity of Aeolian tone, Journal of fluid mechanics, 1. (1956): pp. 607.
[13] Blake, W. K. “Mechanics of flow-induced sound and vibration”. General Concepts and Elementary Sources, 1. (1986.): pp. 44–64.
[14] Curle, N., “The influence of solid boundaries upon aerodynamic sound”, Proceedings of the Royal Society of London Series A, 231. (1955): pp. 505– 51.
[15] Afshari, A., Dehghan, A. A., Kalantar, V., Farmani, M.. “Experimental investigation of surface pressure spectra beneath turbulent boundary layer over a flat plate with microphone”, Modares Mechanical Engineering, 17. 1. (2017): pp. 263-272, (in Persian).
[16] Williams, J. F., Hall, L., “Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane”. Journal of Fluid Mechanics, 40. (1970): pp. 657-670.
[17] Fujita, H., Suzuki, H., “The Aeolian tone and the surface pressure in high Reynolds number flow”. AIAA paer. 99-(2002 ).
[18] Casalino, D., Jacob, M., “Prediction of aerodynamic sound from circular rods via spanwise statistical modeling”. Journal of Sound and Vibration. 262.(2003): pp. 815–844.
[19] Maryami, R., Dehghan, A. A., Afshari, A., “Experimental investigation of circular cylinder model noise by measuring unsteady surface pressures”, Amirkabir Journal of Mechanical Engineering, Accepted Manuscript, (2017).
[20] Fujita, H., “The characteristics of the Aeolian tone radiated from two-dimensional cylinders”. Fluid Dynamics Research, 42. (2010):1–25.
[21] Leclercq, D., Doolan, C.J., “The interaction of a bluff body with a vortex wake”. Journal of Fluids and Structures, 25. (2009): 867–888.
[22] Ackerman, J. R., Gostelow, J. P., Rona, A., Carscallen, W. E., “Measurements of Fluctuating Pressures on a Circular Cylinder in Subsonic Cross flow” AIAA JOURNAL, 47 (2009): 2121-2131.
[23] Oguma, Y., Yamagata, T., Fujisawa, N., “Measurement of sound source distribution around a circular cylinder in a uniform flow by combined particle image velocimetry and microphone technique” J. Wind Eng. Ind. Aerodyn.118, (2013):1–11.
[24]Doolan, C.J., “Computation bluff body aerodynamic noise prediction using a statistical approach”. Applied Acoustics, 71(2010):1194–1203.
[25] Ali, M.S.M., Doolan, C.J., Wheatley,V., “Aeolian tones generated by a square cylinder with a detached flat plate”. AIAAJournal, 51 (2013): 291–301.
[26] Orselli, R. M., Meneghini, J. R., and Saltara, F., “Two and Three-Dimensional Simulation of Sound Generated by Flow Around a Circular Cylinder” 15th AIAA/CEAS Aeroacoustics Conference )30th AIAA Aeroacoustics Conference( 11 - 13 May
(2009), Miami, Florida.
[27] Barlow, J. B., Rae, W., Pope, A., “Low-speed wind tunnel testing”, John Wiely & Sons, Inc, (1999).
[28] Wilkins, S. J., Hall, J. W., “Experimental Investigation of a Tandem Cylinder System With a Yawed Upstream Cylinder”, Journal of Pressure Vessel Technology. 136. (2014): pp. 1-8.
[29] Hutcheson, F. V., Brooks, T. F., Lockard, D. P., Choudhari, M. M., Stead. D. J., “Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations”, 20th AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum, (AIAA 2014-2762).
[30] Salze, É., Bailly, C., Marsden, O., Jondeau, E., Juvé, D., “An experimental characterization of wall pressure wave vector-frequency spectra in the presence of pressure gradients”, in Proceeding of, (2014).
[31] Uberoi, M. S., Wallis, S., “Effect of Grid Geometry on Turbulence Decay”, Phys. Fluids, 9. (1967): pp. 1216-1224.
[32] Corrsin, S., “Turbulence: experimental methods”. In Handbuch der Physik (ed. S. Flugge & C.A. Truesdell), pp. 524-589.
[33] Roach, P.E., “The generation of nearly isotropic turbulence by means of grids”, Int J Heat Fluid Flow, 8. (1963): pp. 82–92.
[34] Lavoie, P., Djenidi, L. Antonia, R. A., “Effect of Initial Conditions on the Generation of Coherent Structures in Grid Turbulence”, Book of Extended Abstracts Whither Turbulence Prediction and Control, Seoul, Korea, (2006).
[35] Aufderheide, T., Bode, C., Kozulovic, D., Friedrichs, J., “The generation of higher levels of turbulence in a low-speed cascade wind tunnel by pressurized tubes”, 11th World Congress on Computational Mechanics (WCCM XI).
[36] Laws, E. M., Livsey, J. L., “Flow through screens”, Ann. Rev. Fluid Mech. 10, (1978): pp.247-266.
[37] Mohamed, M. S., Larue, J. C., “The decay power law in grid-generated turbulence”, J. Fluid Mech. 219. (1990): pp. 195-214.
[38] Hinze, J., Turbulence, 2nd Ed., McGraw-Hill, New York, (1975).
[39] Bendat, J. S., Piersol, A. G., “Random data: analysis and measurement procedures”, John Wiley & Sons, (2011).
[40] Sagrado, A. G., “Boundary Layer and Trailing Edge Noise Sources”, Ph.D. Thesis, Department of Engineering, University of Cambridge, (2007).
[41] Herrig, A., Kamruzzaman, M., Würz, W., Wagner, S., “Broadband airfoil trailing-edge noise prediction from measured surface pressures and spanwise length scales, noise notes”, 12. (2013): pp.13-36.
[42] Achenbach, E., “Distribution of local pressure and skin friction around a circular cylinder in cross- flow up to Re = 5×106”, J. Fluid Mech. 34. (1968): PP.625-639.
[43] Sadeh, W., Saharon, D.B., “Turbulence Effect On Cross flow Around a Circular Cylinder at Subcritical Reynolds Numbers”, NASA Contractor Report 3622.
[44] Norberg, C., “Interaction between free stream turbulence and vortex shedding for a single tube in cross flow”, Journal of Wind Engineering and Industrial Aerodynamics, 23. (1986): pp. 501-514.
[45] Norberg, C., “Effect of Reynolds number and a low-intensity free stream turbulence on the flow around a circular cylinder”, Ph.D. Thesis, Chalmers university of technology, (1987).
[46] Breuer, M., “Large eddy simulation of the subcritical flow past a circular cylinder: Numerical and modeling aspects”, Int. J. Numer. Meth. Fluids, 28. (1998): pp. 1281–1302.
[47] Jenkins, L.N., Khorrami, M.R., Choudhari, M.M., McGinley, C.B., “Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise”, AIAA paper. AIAA-2005-2812, May 2005.