[1] J. Gabriel, The biology of cancer, Whurr publishers London and Philadelphia, 2004.
[2] E.B. J. Massague, R. R.Gomis, Understanding the molecular mechanisms driving metastasis, Molcular Oncology, 11 (2017).
[3] J.H.V. G.W. Brodland, The mechanics of metastasis: insights from a computational model, PLOS ONE, 7(9) (2012).
[4] C. Dong, Adhesion and signaling of tumor cells to leukocytes and endothelium in cancer metastasis, Springer Verlag Berlin Heidelberg, 4 (2009) 477-521.
[5] K.K. D. Wirtz, P.C. Searson, The physics of cancer: the role of physical interactions and mechanical forces in metastasis, Nat Rev Cancer, 11(7) (2012) 512-522.
[6] L. Preziosi, Cancer modelling and simulation, CRC Press, 2009.
[7] D.W. M. Qiao, M. Carey, X. Zhou, L. Zhang, Multi- scale agent-based multiple myeloma cancer modeling and the related study of the balance between osteoclasts and osteoblasts, PLOS ONE, 10(12) (2015).
[8] G.S.S. T.S. Deisboeck, Multiscale cancer modelling, CRC Press, 2011.
[9] J.L. V. Cristini, Multiscale modeling of cancer, Cambridge University Press, 2010.
[10] R.V.N.M. A. V. Antoniouk, Mathematics and life sciences, De Gruyter, 2013.
[11] S.H.S. F. Pourhasanzadeh, A.M. Alizadeh, An agent- based model of avascular tumor growth: immune response tendency to prevent cancer development, Simulation: Transactions of the Society for Modeling and Simulation International, 93(8) (2017) 641-657.
[12] A.W. S.M. Bajimaya S. Joldes, K. Miller, Modeling three-dimensional avascular tumor growth using lattice gas cellular automata, Computational Biomechanics for Medicine, (2014) 15-26.
[13] S.J. T. Rose, Mathematical models of avascular tumor growth, Society for Industrial and Applied Mathematics, 49(2) (2007) 179-208.
[14] S.A.a.L. Preziosi, Multiphase models tumor of growth, in, Springer, 2009.
[15] R.F.K. M.H. Hoskins, J. Bistline, C. Dong, Coupled flow-structure-biochemistry simulations of dynamic systems of blood cells using an adaptive surface tracking method, Journal of Fluids and Structure, 25(5) (2009) 936-953.
[16] M.S. S. Liang, C. Dong, Shear stress and shear rate differentially affect the multi-step process of leukocyte- facilitated melanoma adhesion, Experimental Cell Research, 310(2) (2005) 282-292.
[17] D.P. G. Megali, M. Cacciola, F. Calarco, D. De Carlo, F. Lagana, F.C. Morabito, Modeling interface response in cellular adhesion, in: COMSOL Conference Milan, 2009.
[18] T.A.S. R.E. Bruehl, D. F. Bainton, Quantitation of L-selectin distribution on human leukocyte microvilli by immunogold labeling and electron microscopy, Journal of Histochem Cytochem, 44(8) (1996) 835- 844.
[19] S.K.D. S. Bose, J.M. Karp, R. Karnik, A semianalytical model to study the effect of cortical tension on cell rolling, Biophysical Journal, 90(12) (2010) 3870-3879.
[20] S.M.A. D.A. Hammer, Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin- mediated neutrophil adhesio, Biophysical Journal, 63(1) (1992) 35-57.
[21] D.T. M. Dembo, K. Saxaman, D. Hammer, The reaction-limited kinetics of membrane-to-surface adhesion and detachment, The Royal Society of London, 234(1274) (1988) 55-83.
[22] C.D.E. S. Jadhav, K. Konstantopoulos, A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling, Biophysical Journal, 88(1) (2005) 96-104.
[23] S.Y. J. Leyton, M.H. Hoskins, R.F. Kunz, J.D. Zahn, C. Dong, Design of a side-view particle imaging velocimetry flow system for cell–substrate adhesion studies, Journal of Biomechanical Engineering, 128(2) (2006) 271-278.
[24] K.H. J. Carter, H. Harasaki, W.A. Smith, Short exposure time sensitivity of white cells to shear stress, American Soceity for Artificial Internal Organs, 49(6) (2003) 687-691.
[25] T.C.H. T.S. Dewitz, R.R. Martun, L.V. McIntire, Mechanical trauma in leukocytes, Journal of Laberatory and Clinical Medicine, 90(4) (1977) 728- 736.
[26] S. Nidadavolu, Analysis and comparison of parallel plate flow chambers to determine consistency of fluid forces on cells, 2013.