بررسی محاسباتی تأثیر چسبندگی بین سلول سرطانی و دیواره رگ بر حرکت سلول در رگ‌های خونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو/دانشگاه تهران

2 استادیار/دانشگاه تهران

چکیده

سرطان بیماری‌ای است که باعث مرگ ومیر بسیاری در جهان شده است. علیرغم پیشرفت‌های وسیع پزشکی، هنوز شناخت کافی از سرطان وجود ندارد. بنابراین، نیاز قابل توجهی به مدلسازی‌های مهندسی برای شناخت بهتر آن احساس می شود. حرکت سلول سرطانی در خون و چسبندگی‌های آن در حین متاستاز، از پیچیده‎ترین ساز وکارهایی است که در بدن اتفاق می‌افتد. در این تحلیل یک مدل دوبعدی از حرکت سلول سرطانی توسعه داده شده است که در دو حالت مختلف در یک مسیر مستقیم در رگ خونی حل می‌شود. دو حالت تحلیل شامل وجود و عدم وجود چسبندگی بین سلول سرطانی و دیواره رگ در حضور چسبندگی بین سلول سرطانی و گلبول سفید است. این تحلیل‌ها با روش اجزای محدود و به کمک معادلات برهمکنش سیال-جامد صورت می گیرد. در این تحلیل‌ها فرض شده است که خواص سلول‌ها و خون به‌صورت همگن هستند و سیال به صورت نیوتنی و تراکم ناپذیر است. همچنین سلول سرطانی به صورت صلب و گلبول سفید به صورت الاستیک خطی مدل شده است. تحلیل‌ها نشان می‌دهد که تأثیر وجود پیوندهای بین سلول و دیواره رگ به مراتب بیشتر از تأثیر پیوندهای بین سلول‌ها است. بررسی دقیق نمودارهای تحلیل های چسبندگی در کنار مسائل پزشکی نظیر دارورسانی به بیماران سرطانی، در درمان و پیشگیری از متاستاز سرطان تأثیر بسزایی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Computational Investigation of the Effect of Adhesion between Cancer Cells and Vessel Walls on the Movement of the Cells in Blood Vessels

نویسندگان [English]

  • Asghar Khorram 1
  • Bahman Vahidi 2
  • Zahra Mollahoseini 1
1 MSc/University of Tehran
2 Assistant professor/University of Tehran
چکیده [English]

Cancer is a disease that causes mortality in the world. Despite of improvements in medicine, there is not still sufficient knowledge of cancer. Therefore, there is a strong need for engineering modeling to understand it. The motion and adhesion of cancer cells in a blood vessel during metastasis is a complex mechanism that occurs in body. A two[1]dimensional model of the movement of cancer cells has been developed that is solved in two different modes in a straight line in a blood vessel. These modes are related to presence and absence of adhesion between cancer cell and blood vessel wall in presence of adhesion between cancer cell and white blood cell. The analysis is performed using FEM and FSI equations. It is assumed that the properties of blood and cells are homogeneous and fluid is incompressible and Newtonian. Cancer cell is modeled as a rigid body and white blood cell is assumed as linear elastic. The analysis shows that the influence of adhesion between the cell and the vessel wall is more important from cell-cell adhesion. Through consideration in the adhesion charts along with medical issues such as drug delivery to patients can affect the treatment or prevention of metastasis.

کلیدواژه‌ها [English]

  • Cancer cells
  • Cell mechanics
  • Metastasis
  • Computational modeling
  • Adhesion
[1]  J. Gabriel, The biology of cancer, Whurr publishers London and Philadelphia, 2004.
[2]       E.B. J. Massague, R. R.Gomis, Understanding the molecular mechanisms driving metastasis, Molcular Oncology, 11 (2017).
[3] J.H.V. G.W. Brodland, The mechanics of metastasis: insights from a computational model, PLOS ONE, 7(9) (2012).
[4] C. Dong, Adhesion and signaling of tumor cells to leukocytes and endothelium in cancer metastasis, Springer Verlag Berlin Heidelberg, 4 (2009) 477-521.
[5] K.K. D. Wirtz, P.C. Searson, The physics of cancer: the role of physical interactions and mechanical forces in metastasis, Nat Rev Cancer, 11(7) (2012) 512-522.
[6] L. Preziosi, Cancer modelling and simulation, CRC Press, 2009.
[7] D.W. M. Qiao, M. Carey, X. Zhou, L. Zhang, Multi- scale agent-based multiple myeloma cancer modeling and the related study of the balance between osteoclasts and osteoblasts, PLOS ONE, 10(12) (2015).
[8] G.S.S. T.S. Deisboeck, Multiscale cancer modelling, CRC Press, 2011.
[9] J.L. V. Cristini, Multiscale modeling of cancer, Cambridge University Press, 2010.
[10] R.V.N.M. A. V. Antoniouk, Mathematics and life sciences, De Gruyter, 2013.
[11] S.H.S. F. Pourhasanzadeh, A.M. Alizadeh, An agent- based model of avascular tumor growth: immune response tendency to prevent cancer development, Simulation: Transactions of the Society for Modeling and Simulation International, 93(8) (2017) 641-657.
[12] A.W. S.M. Bajimaya S. Joldes, K. Miller, Modeling three-dimensional avascular tumor growth using lattice gas cellular automata, Computational Biomechanics for Medicine, (2014) 15-26.
[13] S.J. T. Rose, Mathematical models of avascular tumor growth, Society for Industrial and Applied Mathematics, 49(2) (2007) 179-208.
[14] S.A.a.L. Preziosi, Multiphase models tumor of growth, in, Springer, 2009.
[15] R.F.K. M.H. Hoskins, J. Bistline, C. Dong, Coupled flow-structure-biochemistry simulations of dynamic systems of blood cells using an adaptive surface tracking method, Journal of Fluids and Structure, 25(5) (2009) 936-953.
[16]  M.S. S. Liang, C. Dong, Shear stress and shear rate differentially affect the multi-step process of leukocyte- facilitated melanoma adhesion, Experimental Cell Research, 310(2) (2005) 282-292.
[17]  D.P. G. Megali, M. Cacciola, F. Calarco, D. De Carlo, F. Lagana, F.C. Morabito, Modeling interface response in cellular adhesion, in: COMSOL Conference Milan, 2009.
[18] T.A.S. R.E. Bruehl, D. F. Bainton, Quantitation of L-selectin distribution on human leukocyte microvilli by immunogold labeling and electron microscopy, Journal of Histochem Cytochem, 44(8) (1996) 835- 844.
[19]  S.K.D. S. Bose, J.M. Karp, R. Karnik, A semianalytical model to study the effect of cortical tension on cell rolling, Biophysical Journal, 90(12) (2010) 3870-3879.
[20]  S.M.A. D.A. Hammer, Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin- mediated neutrophil adhesio, Biophysical Journal, 63(1) (1992) 35-57.
[21] D.T. M. Dembo, K. Saxaman, D. Hammer, The reaction-limited kinetics of membrane-to-surface adhesion and detachment, The Royal Society of London, 234(1274) (1988) 55-83.
[22] C.D.E. S. Jadhav, K. Konstantopoulos, A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling, Biophysical Journal, 88(1) (2005) 96-104.
[23] S.Y. J. Leyton, M.H. Hoskins, R.F. Kunz, J.D. Zahn, C. Dong, Design of a side-view particle imaging velocimetry flow system for cell–substrate adhesion studies, Journal of Biomechanical Engineering, 128(2) (2006) 271-278.
[24] K.H. J. Carter, H. Harasaki, W.A. Smith, Short exposure time sensitivity of white cells to shear stress, American Soceity for Artificial Internal Organs, 49(6) (2003) 687-691.
[25] T.C.H. T.S. Dewitz, R.R. Martun, L.V. McIntire, Mechanical trauma in leukocytes, Journal of Laberatory and Clinical Medicine, 90(4) (1977) 728- 736.
[26] S. Nidadavolu, Analysis and comparison of parallel plate flow chambers to determine consistency of fluid forces on cells, 2013.