[1]J. Wang, H.-P. Wang, F. Lu, B.E. Carlson, D.R. Sigler, Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model, International Journal of Heat and Mass Transfer, 89 (2015) 1061-1072.
[2] W. Zhang, D. Sun, L. Han, Y. Li, Optimised design of electrode morphology for novel dissimilar resistance spot welding of aluminium alloy and galvanised high strength steel, Materials & Design, 85 (2015) 461-470.
[3] H.-S. Shin, M. de Leon, Parametric study in similar ultrasonic spot welding of A5052-H32 alloy sheets, Journal of Materials Processing Technology, 224 (2015) .232-222
[4] A. Plaine, A. Gonzalez, U. Suhuddin, J. Dos Santos, N. Alcântara, The optimization of friction spot welding process parameters in AA6181-T4 and Ti6Al4V dissimilar joints, Materials & Design, 83 (2015) 36-41.
[5] V. Prashanthkumar, N. Venkataram, N. Mahesh, Process Parameter Selection for Resistance Spot Welding through
Thermal Analysis of 2mm CRCA Sheets, Procedia Materials Science, 5 (2014) 369-378.
[6] Ó. Martín, P. De Tiedra, M. López, Artificial neural networks for pitting potential prediction of resistance spot welding joints of AISI 304 austenitic stainless steel, Corrosion Science, 52(7) (2010) 2397-2402.
[7] T. Sadowski, P. Golewski, M. Kneć, Experimental investigation and numerical modelling of spot welding– adhesive joints response, Composite structures, 112 (2014) 66-77.
[8] R. Raoelison, A. Fuentes, C. Pouvreau, P. Rogeon, P. Carre, F. Dechalotte, Modeling and numerical simulation of the resistance spot welding of zinc coated steel sheets using rounded tip electrode: Analysis of required conditions, Applied Mathematical Modelling, 38(9) (2014) 2505-2521.
[9] Y. Li, Z. Wei, Y. Li, Q. Shen, Z. Lin, Effects of cone angle of truncated electrode on heat and mass transfer in resistance spot welding, International Journal of Heat and Mass Transfer, 65 (2013) 400-408.
[10] X. Wang, Y. Gu, T. Qiu, Y. Ma, D. Zhang, H. Liu, An experimental and numerical study of laser impact spot welding, Materials & Design (1980-2015), 65 (2015) .2511-3411
[11] H. Pashazadeh, Y. Gheisari, M. Hamedi, Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multiobjective genetic algorithm, Journal of Intelligent Manufacturing, 27(3) (2016) 549-559.
[12] M. Hamedi, M. Shariatpanahi, A. Mansourzadeh, Optimizing spot welding parameters in a sheet metal assembly by neural networks and genetic algorithm, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(7) (2007) 1175-1184.
[13] R. Hashemi, H. Pashazadeh, M. Hamedi, An incrementally coupled thermo-electro-mechanical model for resistance spot welding, Materials and Manufacturing Processes, 27(12) (2012) 1442-1449.
[14] M. Fatehi, M. Kaviany, Adiabatic reverse combustion in a packed bed, Combustion and Flame, 99(1) (1994) 1-17.
[15] A. Kraus, A. Bar-Cohen, Thermal Analysis and Control of Electronic Equipment, McGraw-Hill, New York, 1983, p. 35.
[16] A.H. Volume, 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM international, (1990) 889-896.
[18] R.W. Manual, the Resistance Welder Manufacturers’ Association, Caps, 1(2) (1946) 7.
[19] B. Xing, Y. Xiao, Q.H. Qin, Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement, Measurement, 115 (2018) 233-242.