[1] Ö.F. Erkendirci, Investigation of the quasi static penetration resistance behavior of carbon fiber reinforced laminate HDPE composites, Composites Part B: Engineering, 93 (2016) 344-351.
[2] W.W. Müller, F. Saathoff, Geosynthetics in geoenvironmental engineering, Science and technology of advanced materials, 16(3) (2015) 034605.
[3] J. He, J. Liu, J. Li, Y. Lai, X. Wu, Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HFP/HDPE membrane, Materials Letters, 170 (2016) 126-129.
[4] M. Boyce, E. Arruda, An experimental and anaiytical investigation of the large strain compressive and tensile response of glassy polymers, Polymer Engineering & Science, 30(20) (1990) 1288-1298.
[5] C. G’sell, V. Favier, J. Hiver, A. Dahoun, M. Philippe, G. Canova, Microstructure transformation and stress‐strain behavior of isotactic polypropylene under large plastic deformation, Polymer Engineering & Science, 37(10) (1997) 1702-1711.
[6] T. Amornsakchai, R. Olley, D. Bassett, M. Al-Hussein, A. Unwin, I. Ward, On the influence of initial morphology on the internal structure of highly drawn polyethylene, Polymer, 41(23) (2000) 8291-8298.
[7] C. G’sell, J. Jonas, Determination of the plastic behaviour of solid polymers at constant true strain rate, Journal of materials science, 14(3) (1979) 583-591.
[8] C. G’sell, A. Dahoun, Evolution of microstructure in semi- crystalline polymers under large plastic deformation, Materials Science and Engineering: A, 175(1-2) (1994) 183-199.
[9] M. Uchida, N. Tada, Sequential evaluation of continuous deformation field of semi-crystalline polymers during tensile deformation accompanied by neck propagation, International Journal of Plasticity, 27(12) (2011) 2085-2102.
[10] F. ZaÃŊri, M. NaÃŊt-Abdelaziz, K. Woznica, J.-M. Gloaguen, Elasto-viscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate, Journal of Engineering Materials and Technology, 129(1) (2007) 29-35.
[11] S. Ahzi, A. Makradi, R. Gregory, D. Edie, Modeling of deformation behavior and strain-induced crystallization in poly (ethylene terephthalate) above the glass transition temperature, Mechanics of materials, 35(12) (2003) 1139-1148.
[12] G. Ayoub, F. Zaïri, C. Fréderix, J.-M. Gloaguen, M. Naït- Abdelaziz, R. Seguela, J.-M. Lefebvre, Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: experiments and constitutive modelling, International Journal of Plasticity, 27(4) (2011) 492-511.
[13] G. Ayoub, F. Zaïri, M. Naït-Abdelaziz, J. Gloaguen, Modelling large deformation behaviour under loading– unloading of semicrystalline polymers: application to a high density polyethylene, International Journal of Plasticity, 26(3) (2010) 329-347.
[14] J. Richeton, S. Ahzi, K. Vecchio, F. Jiang, A. Makradi, Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates, International journal of solids and structures, 44(24) (2007) 7938-7954.
[15] S. Nikolov, R. Lebensohn, D. Raabe, Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers, Journal of the Mechanics and Physics of Solids, 54(7) (2006) 1350-1375.
[16] M. Boyce, S. Socrate, P. Llana, Constitutive model for the finite deformation stress–strain behavior of poly (ethylene terephthalate) above the glass transition, Polymer, 41(6) (2000) 2183-2201.
[17] B. Lee, A. Argon, D. Parks, S. Ahzi, Z. Bartczak, Simulation of large strain plastic deformation and texture evolution in high density polyethylene, Polymer, 34(17) (1993) 3555-3575.
[18] B. Lee, D. Parks, S. Ahzi, Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers, Journal of the Mechanics and Physics of Solids, 41(10) (1993) 1651-1687.
[19] J.A. Alvarado-Contreras, M.A. Polak, A. Penlidis, Constitutive modeling of damage evolution in semicrystalline polyethylene, Journal of Engineering Materials and Technology, 132(4) (2010) 041009.
[20] J. Lemaitre, How to use damage mechanics, Nuclear engineering and design, 80(2) (1984) 233-245.
[21] C. Bunn, Molecular Structure and the Crystallinity of Long‐Chain Polymers, Journal of Applied Physics, 25(7) (1954) 820-825.
[22] P. Bowden, R. Young, Deformation mechanisms in
crystalline polymers, Journal of Materials Science, 9(12) (1974) 2034-2051.
[23] R. Seguela, Dislocation approach to the plastic deformation of semicrystalline polymers: kinetic aspects for polyethylene and polypropylene, Journal of Polymer Science Part B: Polymer Physics, 40(6) (2002) 593-601.
[24] J. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1976, pp. 101-127.
[25] S. Schoenfeld, S. Ahzi, R. Asaro, Elastic-plastic crystal mechanics for low symmetry crystals, Journal of the Mechanics and Physics of Solids, 43(3) (1995) 415-446.
[26] D.M. Parks, S. Ahzi, Polycrystalline plastic deformation and texture evolution for crystals lacking five independent slip systems, Journal of the Mechanics and Physics of Solids, 38(5) (1990) 701-724.
[27] J. Alvarado‐Contreras, M.A. Polak, A. Penlidis, Micromechanical approach to modeling damage in crystalline polyethylene, Polymer Engineering & Science, 47(4) (2007) 410-420.
[28] J. Lemaitre, A course on damage mechanics, Springer Science & Business Media, 2012.
[29] M.C. Boyce, E.M. Arruda, Constitutive models of rubber
elasticity: a review, Rubber chemistry and technology, 73(3) (2000) 504-523.
[30] A. Cohen, A Padé approximant to the inverse Langevin function, Rheologica acta, 30(3) (1991) 270-273.
[31] P. Fotiu, H. Irschik, F. Ziegler, Dynamic plasticity: structural drift and modal projections, Nonlinear
dynamics in engineering systems (Schiehlen, W., ed.), (1990) 75-82.
[32] L.R.G. Treloar, The physics of rubber elasticity, Oxford University Press, USA, 1975.
[33] P. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix, J. Jonas, Yield surfaces for textured polycrystals— I. Crystallographic approach, Acta Metallurgica, 35(2) (1987) 439-451.
[34] J.J. Craig, Introduction to robotics: mechanics and control, Pearson Prentice Hall Upper Saddle River, 2005.
[35] A. MORAWIEC, Orientations and Rotations. Computations in Crystallographic Textures. x+ 200 pp, in, Berlin, Heidelberg, New York: Springer-Verlag. Price Euros, 2004.
[36] J. Alvarado-Contreras, M. Polak, A. Penlidis, Numerical implementation of a damage-coupled material law for semicrystalline polyethylene, Engineering Computations, 29(3) (2012) 295-320.
[37] J. Simo, T.J. Hughes, Computational inelasticity, volume 7 of interdisciplinary applied mathematics, in, Springer-Verlag, Berlin, 1998.
[38] J. Angeles, Rational kinematics, Springer Science & Business Media, 2013.
[39] C. G’sell, J. Jonas, Yield and transient effects during the plastic deformation of solid polymers, Journal of Materials Science, 16(7) (1981) 1956-1974.