[1] G.G. Szego, Experimental and numerical investigation of a parallel jet MILD combustion burner system in a laboratory-scale furnace, 2010.
[2] P. Li, J. Mi, B. Dally, F. Wang, L. Wang, Z. Liu, S. Chen, C. Zheng, Progress and recent trend in MILD combustion, Science China Technological Sciences, 54(2) (2011) 255-269.
[3] H. Tsuji, A.K. Gupta, T. Hasegawa, M. Katsuki, K. Kishimoto, M. Morita, High temperature air combustion: from energy conservation to pollution reduction, CRC press, 2002.
[4] A. Cavaliere, M. de Joannon, Mild combustion, Progress in Energy and Combustion science, 30(4) (2004) 329-366.
[5] G. Szegö, B. Dally, G. Nathan, Operational characteristics of a parallel jet MILD combustion burner system, Combustion and Flame, 156(2) (2009) 429-438.
[6] M.M. Maroto-Valer, Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology: Carbon Dioxide (CO2) Storage and Utilisation, Elsevier, 2010.
[7] Y. Tu, K. Su, H. Liu, S. Chen, Z. Liu, C. Zheng, Physical and chemical effects of CO2 addition on
CH4/H2 flames on a Jet in Hot Coflow (JHC) burner, Energy & Fuels, 30(2) (2016) 1390-1399.
[8] Y. Tu, H. Liu, W. Yang, Flame Characteristics of CH4/ H2 on a Jet-in-Hot-Coflow Burner Diluted by N2, CO2, and H2O, Energy & Fuels, 31(3) (2017) 3270- 3280.
[9] L. Wang, Z. Liu, S. Chen, C. Zheng, J. Li, Physical and chemical effects of CO2 and H2O additives on counterflow diffusion flame burning methane, Energy & fuels, 27(12) (2013) 7602-7611.
[10] S. Chen, H. Liu, C. Zheng, Methane combustion in MILD oxyfuel regime: Influences of dilution atmosphere in co-flow configuration, Energy, 121 (2017) 159-175.
[11] Z. Mei, J. Mi, F. Wang, C. Zheng, Dimensions of CH4-jet flame in hot O2/CO2 coflow, Energy & Fuels, 26(6) (2012) 3257-3266.
[12] J. Park, J.S. Park, H.P. Kim, J.S. Kim, S.C. Kim, J.G. Choi, H.C. Cho, K.W. Cho, H.S. Park, NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide, Energy & fuels, 21(1) (2007) 121- 129.
[13] N. Gascoin, Q. Yang, K. Chetehouna, Thermal effects of CO 2 on the NO x formation behavior in the CH 4 diffusion combustion system, Applied Thermal Engineering, 110 (2017) 144-149.
[14] Y. Song, C. Zou, Y. He, C. Zheng, The chemical mechanism of the effect of CO 2 on the temperature
in methane oxy-fuel combustion, International Journal of Heat and Mass Transfer, 86 (2015) 622-628.
[15] F.C. Christo, B.B. Dally, Modeling turbulent reacting jets issuing into a hot and diluted coflow, Combustion and flame, 142(1-2) (2005) 117-129.
[16] B.B. Dally, A. Karpetis, R. Barlow, Structure of turbulent non-premixed jet flames in a diluted hot coflow, Proceedings of the combustion institute, 29(1) (2002) 1147-1154.
[17] J. Mi, P. Li, B.B. Dally, R.A. Craig, Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace, Energy & Fuels, 23(11) (2009) 5349-5356.
[18] A. Mardani, S. Tabejamaat, M. Ghamari, Numerical study of influence of molecular diffusion in the Mild combustion regime, Combustion Theory and Modelling, 14(5) (2010) 747-774.
[19] P. Cumber, M. Fairweather, H. Ledin, Application of wide band radiation models to non-homogeneous combustion systems, International Journal of Heat and Mass Transfer, 41(11) (1998) 1573-1584.
[20] C. Bowman, R. Hanson, W. Gardiner, V. Lissianski, M. Frenklach, M. Goldenberg, G. Smith, GRI-Mech 2. 11: An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion and NO Formation and Reburning, NASA, (19980005146) (1997).