بررسی عملکرد ترمودینامیکی جفت سیال عامل سیکل تبرید تراکمی آبشاری دومرحله ای جهت سرمایش تجهیزات مخابراتی با رویکرد کاهش حجم تجهیزات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی مکانیک، دانشگاه آزاد اسلامی، کرمان، ایران

2 گروه مکانیک، دانشگاه آزاد اسلامی کرمان

چکیده

در این تحقیق یک سیکل تبرید تراکمی آبشاری دومرحله‌ای با مبردهای مختلف به صورت ترمودینامیکی بررسی شده و سپس تک تک اجزاء سیکل با رویکرد دستیابی به حجم کمتر مورد مطالعه قرار می‌گیرد. متغیرهای عملکردی شامل دمای تبخیر، نسبت فشارکمپرسور و مقدار کار ورودی در هر دو سیکل دما بالا و دما پایین بوده و ظرفیت سرمایشی به عنوان قید مسئله در نظر گرفته شده است. با تغییر مبردهای سیکل دما بالا و دما پایین، تغییر حجم اجزاء مورد استفاده و تغییر ضریب عملکرد سیستم بررسی می‌گردد. نتایج نشان می‌دهند که کمترین حجم سیستم با استفاده از مبرد آر- 134آ ، در سیکل دما بالا و مبردهای آر-508بی و آر-23 در سیکل دما پایین به دست می‌آید. همچنین در دماهای تبخیر پایین حجم کمپرسور مورد استفاده به شدت وابسته به مقدار ظرفیت سرمایشی است. به نحوی‌که در دمای تبخیر 173 کلوین، با دو برابر شدن ظرفیت سرمایشی از 100 تا 200 وات، حجم کمپرسور از 9100 سانتی‌مترمکعب به میزان 3/2 برابر افزایش می‌یابد. همچنین مشاهده گردید با افزایش دمای تبخیر، حجم کندانسور هوایی کاهش می‌یابد و در دمای تبخیر 173 کلوین، با دو برابر شدن ظرفیت سرمایش از 100 تا 200 وات، حجم کندانسور هوایی در سیستم دومرحله‌ای آبشاری از 4500 به 13000 سانتی‌مترمکعب افزایش می‌یابد و با افزایش دمای تبخیر تغییر در افزایش حجم به واسطه تغییر ظرفیت سرمایشی کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermodynamic Analysis of Refrigerants Pairs in Two Stages Cascade Vapor Compression Refrigeration Cycle for Cooling of Telecommunications Equipment with Volume Decreasing Approach

نویسندگان [English]

  • Mohammad Mehdi Keshtkar 1
  • Elahe Gholamian 2
1 Mechanical Eng. Department, Islamic Azad University, Kerman, Iran
2 Mechanical Engineering, Islamic Azad University, Kerman
چکیده [English]

In this research, a two-stage cascade refrigeration cycle with different refrigerants is analyzed thermodynamically and then every component of the cycle with the approach to decrease the volume is studied. Functional variables are including evaporation temperature, pressure ratio and the amount of input work in both high and low-temperature cycle and cooling capacity as stated in issue is considered. With the change of refrigerants in high and low-temperature circuits, variation the volume of the components and change the coefficient of performance of the system is investigated. The results show that the lowest volume of the system achieves in the high-temperature cycle with the use of refrigerant R-134a use and in the low-temperature cycle with the use of R-508B and R- 23 and the total volume of the system is reduced. It is observed that at low evaporation temperatures, the compressor volume is highly dependent on the amount of cooling capacity. As for the evaporation temperature 173K, with increasing cooling capacity from 100 W to 200 W, the compressor volume increases 3.2 times from 9100 cm3. It is also seen with increasing the evaporation temperature, the volume of air-cooled condenser reduces and in the evaporation temperature 173K, with increasing of cooling capacity from 100 W to 200 W, the volume of air-cooled condenser system in two-stage cascade increases from 4500 cm3 to 13000 cm3 .

کلیدواژه‌ها [English]

  • Thermodynamic analysis
  • Two-stage cascade refrigeration
  • Refrigerants Pairs
  • Volume Decreasing
[1] Bandhauer M., Agarwal A., Garimella S., “Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Micro channels”, Journal of Heat Transfer, Vol.128, pp. 1050-1059, 2014.
[2] Bansal P.K, Jain S., “Cascade systems: past, present, and future”, ASHRAE Trans., Vol. 113(1), pp. 245– 252, 2008.
[3]   Bhattacharyya S., Bose S., Sarkar J., “Exergy maximization of cascade refrigeration cycles and its numerical verification for transcritical CO2-C3H8 system”, Int. J. Refrigeration, Vol. 45, pp. 624-632, 2008
[4]  Bhattacharyya S., Mukhopadhyay S. A., Kumar R.K. Khuruna J., “optimization of CO2-C3H8 cascade system for refrigeration and heating”, Int. J. Refrigeration, Vol. 28, pp. 1284-1292, 2005.
[5]   Carel M., Semi-conductor Industry Association, International Technology Roadmap for Semiconductors, 2012.
[6]   Collier J., Thome J., “Convective Boiling and Condensation”, 3rd ed, Oxford: Clarendon Press, 1994.
[7]         Dubey     A.M.,      Kumar     S.,     Agrawal      G.D., “Thermodynamic analysis of a transcritical CO2/ propylene (R744–R-1270) cascade system for cooling and heating applications”, Energy Conversion and Management, Vol. 86, pp.774–783, 2015.
[8]  Gang Y., Jianlin Y., Jiaheng C., “Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle”, Int. J. Refrigeration, 65, pp. 69- 79, 2015
[9]  Getu H.M., Bansal P. K., “Thermodynamic analysis of an R744-R717 cascade refrigeration system”, Int. J. Refrigeration, Vol. 32, pp. 45-54, 2008.
[10]  Dingeç H., İleri A., “Thermo economic optimization of simple refrigerator”, Int. J. Energy Res, Vol. 4, pp. 949-962, 1999.
[11]  Indlee H., Gulshah S., Vaibhav J., Kachhawaha S.S., “Performance Study of Cascade Refrigeration System Using Alternative Refrigerants”, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. Vol. 18(3), pp. 52- 68, 2014.
[12]  Kai D., Shaoqian Z., “A study on the cycle characteristics of an auto-cascade refrigeration system”, school of Energy and Environment, southeast university, Vol. 2, China, 2009.
[13]  Keshtkar M.M., “Effect of subcooling and superheating on performance of a cascade refrigeration system with considering thermo-economic analysis and multi-objective optimization”, Journal of Advanced Computer Science & Technology, Vol.5 (2), pp. 42-47, 2016
[14]    Keshtkar M.M., Talebizadeh P., “Multi-objective optimization of cooling water package based on 3E analysis: A case study”, Energy, Vol. 134, pp. 840- 849, 2017.
[15]      Keshtkar M.M., Zahiri R., “Thermoeconomic Analysis of a Variable Refrigerant Flow System”, Amirkabir Journal of Mechanical Engineering , DOI: 10.22060/mej.2018.13550.5664, 2018. (In Persian)
[16]   Lee J., Mudawar I., “Two-phase flow in high-heat- flux micro-channel heat sink for refrigeration cooling applications: Part II - heat transfer characteristics”, International Journal of Heat and Mass Transfer Vol.48, pp.941-955, 2015.
[17]    Lee T., Liu C.H., Chen T.W., “Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration system”, Int. J. Refrigeration, Vol. 65, pp. 1142-1153, 2006.
[18]   Mafi M., Mousavi Naeynian S.M., Amidpour M., “Exergy analysis of multistage cascade low temperature refrigeration systems used in olefin plants”, Int. J. Refrigeration, Vol. 61, pp. 734-742, 2008.
[19]    Messineo A., “R744-R717 Cascade refrigeration system: performance evaluation compared with a HFC two-stage system”, Energy Proc., Vol. 3, pp.1456-65, 2012.
[20]     Naeemi A., Meindl J.D., “An upper limit for aggregate I/O interconnect bandwidth of GSI chips constrained by power dissipation”, Proceeding of the international interconnect Technology Conference, IEEE, pp.157-159, 2014.
[21]    Parekh A.D, Tailor P.  R, Jivanramajiwala H.R, “Optimization of R507A-R-23 Cascade Refrigeration System using Genetic Algorithm”, International Science Index, Mechanical and Mechatronics Engineering, Vol.4(10), pp. 52-60, 2010..
[22]   Patterson D.J., Brice C.W., Dougal R.A., Kovuri D., “The 'goodness' of small contemporary  permanent magnet electric machines”,  Proceedings of the International Electric Machines and Drives Conference, IEEE, pp.1195-2000, 1-4 June 2003.
[23]   Phelan P., Chiriac V., lee T., “Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics”, Proceedings of the Seventeenth SEMI-THERM Symposium, IEEE, pp.158-167, 2014.
[24] Phelan  P.E.,  Swanson  J.,  Chiriac   F.,   Chiriac V., “Designing a mesoscale vapor- compression refrigerator for cooling high-power microelectronics”, Proceedings of the Inter Society Conference on Thermal Phenomena, IEEE, pp. 218-232, 2004.
[25] Ponsakar C., Balasuthagar A., Sathish K., “Performance and Irreversibility analysis of two stage cascade refrigeration system for different refrigerant pairs”, Department of Mechanical Engineering, SRM University, Kattankulatur, Tamil Nadu-603203, 2017
[26] Sanaye S., Malekmohammadi H.R., “Thermal and economical optimization of air conditioning units with vapor compression refrigeration system”, Applied Thermal Engineering, Vol. 56, pp. 1807-1825, 2004.
[27] Schmidt R.R., Notohardjono B.D., “High-end Server Low-Temperature Cooling”, IBM Journal of Research and Development, Vol. 46 (6), pp. 739-751, 2009.
[28] Selbas R., Kızılkan O., Sencan A., “Thermo economic optimization of subcooled and superheated vapor compression refrigeration cycle”, Energy, Vol. 5, pp. 2108-2128, 2015.
[29] Shahryari Zanganeh O., Sarhaddi F., “Performance Investigation of a Single Effect (Libr-H2O) Absorption Cooling System connected to Photovoltaic Thermal Collectors”, Amirkabir Journal of Mechanical Engineering , DOI:10.22060/mej.2017.11728.5168. 2017. (In Persian)
[30] Sozen A., Arcaklioglu E., Ozalp M., “Calculation of thermodynamic properties of an alternative refrigerant (R-508B) using artificial neural network”, Applied Thermal Engineering, Vol.27 (3), pp.551-559, 2007.
[31] Wadell R., “Experimental Investigation of Compact Evaporators for ultra-Low Temperature Refrigeration of microprocessors”, MS.C. Thesis, Georgia Institute of Technology, 2012.
[32] Wang Q., Sun, X.H., Han G.M., “Numerical investigation on the performance of a single-stage cascade refrigerator operating with two vapor-liquid separators and environmentally benign binary key laboratory of clean energy”, MS.C. Thesis, Zhejiang University, China, 2013
[33] Yilmaz B., Erdonmez N., Sevindir M. K., Mancuhan E., “Thermodynamic Analysis and Optimization of Cascade Condensing Temperature of a CO2(R744)/R-404 ACascade Refrigeration System”, 15th International Refrigeration and Air Conditioning Conference at Purdue, 2014.