[1] H. Liu, P. Li, K. Wang, Optimization of PEM fuel cell flow channel dimensions—Mathematic modeling analysis and experimental verification, International Journal of Hydrogen Energy, 38(23) (2013) 9835-9846.
[2] D. Jeon, S. Greenway, S. Shimpalee, J. Van Zee, The effect of serpentine flow-field designs on PEM fuel cell performance, International journal of hydrogen energy, 33(3) (2008) 1052-1066.
[3] K.-S. Choi, H.-M. Kim, S.-M. Moon, Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC, International Journal of Hydrogen Energy, 36(2) (2011) 1613-1627.
[4] P. Jithesh, A. Bansode, T. Sundararajan, S.K. Das, The effect of flow distributors on the liquid water distribution and performance of a PEM fuel cell International journal of hydrogen energy, 37(22) (2012) 17158-17171.
[5] J.W. Choi, Y.-S. Hwang, S.W. Cha, M.S. Kim, Experimental study on enhancing the fuel efficiency of an anodic dead-end mode polymer electrolyte membrane fuel cell by oscillating the hydrogen, International journal of hydrogen energy, 35(22) (2010) 12469-12479.
[6] J.W. Choi, Y.-S. Hwang, J.-H. Seo, D.H. Lee, S.W. Cha, M.S. Kim, An experimental study on the purge characteristics of the cathodic dead-end mode PEMFC for the submarine or aerospace applications and performance improvement with the pulsation effects, international journal of hydrogen energy, 35(8) (2010) 3698-3711.
[7] Y.-S. Chen, H. Peng, D.S. Hussey, D.L. Jacobson, D.T. Tran, T. Abdel-Baset, M. Biernacki, Water distribution measurement for a PEMFC through neutron radiography, Journal of Power Sources, 170(2) (2007) 376-386.
[8] A.P. Sasmito, A.S. Mujumdar, Performance evaluation of a polymer electrolyte fuel cell with a dead-end anode: A computational fluid dynamic study, International Journal of Hydrogen Energy, 36(17) (2011) 10917-10933.
[9] Gomez, A. Raj, A.P. Sasmito, T. Shamim, Effect of operating parameters on the transient performance of a polymer electrolyte membrane fuel cell stack with a dead-end anode, Applied energy, 130 (2014) 692-701.
[10] J.B. Siegel, D.A. McKay, A.G. Stefanopoulou, D.S. Hussey, D.L. Jacobson, Measurement of liquid water accumulation in a PEMFC with dead-ended anode, Journal of the Electrochemical Society, 155(11) (2008) B1168-B1178.
[11] P. Moçotéguy, F. Druart, Y. Bultel, S. Besse, A. Rakotondrainibe, Monodimensional modeling and experimental study of the dynamic behavior of proton exchange membrane fuel cell stack operating in dead- end mode, Journal of Power Sources, 167(2) (2007) 349-357.
[12] Y. Yang, X. Zhang, L. Guo, H. Liu, Overall and local effects of operating conditions in PEM fuel cells with dead-ended anode, International Journal of Hydrogen Energy, 42(7) (2017) 4690-4698.
[13] Z. Wan, J. Liu, Z. Luo, Z. Tu, Z. Liu, W. Liu, Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell, Applied energy, 104 (2013) 751-757.
[14] M. Rahimi-Esbo, A. Ramiar, A. Ranjbar, E. Alizadeh, Design, manufacturing, assembling and testing of a transparent PEM fuel cell for investigation of water management and contact resistance at dead- end mode, International Journal of Hydrogen Energy, 42(16) (2017) 11673-11688.
[15] M. Rahimi-Esbo, A. Ranjbar, A. Ramiar, E. Alizadeh, M. Aghaee, Improving PEM fuel cell performance and effective water removal by using a novel gas flow field, international journal of hydrogen energy, 41(4) (2016) 3023-3037.
[16] A.P. Sasmito, E. Birgersson, A.S. Mujumdar, A novel flow reversal concept for improved thermal management in polymer electrolyte fuel cell stacks, International Journal of Thermal Sciences, 54 (2012) 242-252.
[17] E. IEC 62282-3-200: Fuel cell technologies - Part 3-200: Stationary fuel cell power systems - Performance test methods, in.