Identification of LiBr-Water Solution Thermodynamic Properties using the ANN Technique

Document Type : Research Article

Authors

Abstract

In this study, Artificial Neural Networks (ANNs) technique is applied for the determination of thermodynamic properties of the Lithium Bromide-Water solution, which is widely used in the thermodynamic simulations. For training of the ANNs the simulation results of a thermodynamic analysis are used. The presented ANN model provides simpler and faster results comparing to complex differential equations and exsiting limited experimental data. Using the ANN technique, the thermodynamic properties of LiBr-Water solution are derived as the mathematical relations. Simulation results show the effectiveness of ANN in identification of LiBr-Water solution thermodynamic properties. 

Keywords


[1] Kalogirou, S.A.; Panteliou, S.; Dentsoras, A.; “Artificial neural-networks used for the performance prediction of a thermosiphon solar water heater”,Renewable Energy, vol. 18, no. 1-2, pp. 87-99, 1999.
[2] Chow, T.T.; Zhang, G.Q.; Lin, Z.; Song. C.L.; “Global optimization of absorption chiller system by genetic algorithm and neural network”, Energy and Building, vol. 34, no. 1, pp. 103-109, 2002.
[3] Kalogirou, S.A.; Panteliou, S.; Dentsoras, A.; “Modeling of solar domestic water heating systems using artificial neural-networks”, Solar Energy, vol.65, no. 6, pp. 335-342, 1999.
[4] Kalogirou, S.A.; Neocleous, C.S.; Schizas, C.N.;“Artificial neural networks for modeling the startingup of a solar steam-generator”, vol. 60, no. 2, pp. 89-100, 1998.
[5] Kalogirou, S.A.; Bojic, M.; “Artificial neural- networks for the prediction of the energy consumption of a passive solar building”, Energy,vol. 25, no. 5, pp. 479-491, 2000.
[6] Pacheco-Vega, A.; Sen, M.; Yang, K.T.; McClain, R.L.; “Neural network analysis of a fin-tube refrigerating heat exchanger with limited experimental data”, Int. J. Heat and Mass Transfer, vol. 44, no. 9, pp. 763-770, 2001.
[7] Palau, A.; Velo, E.; Puigjaner, L.; “Use of neural networks and expert systems to control a gas/solid sorption chilling machine”, Internatioal Journal of Refrigeration, vol. 22, no. 1, pp. 59-66, 1999.
[8] Chouai, A.; Laugier, S.; Richon; D; “Modeling of thermodynamic properties using neural networks: application to refrigerants”, Fluid Phase Equilibria, vol. 199, no. 1, pp. 53-62, 2002.
[9] Sharma, R.; Singhal, D.; Ghosh, R.; Dwivedi, A.; “Potential applications of artificial neural networks to Thermodynamics: vapor–liquid equilibrium predictions”, Computers and Chemical Engineering, vol. 22, no. 3, pp. 385-390, 1999.
[10] Bechtler, H.; Browne, M.W.; Bansal, P.K.; Kecman, V.; “New approach to dynamic modeling of vapour compression liquid chillers: artificial neural-networks”, Applied Thermal Engineering, vol. 21, no. 9, pp. 941-953, 2001.
[11] Sencan, A.; Soteris, Kalogirou, S.A.; “A new approach using artificial neural networks fordetermination of the thermodynamic properties of fluid couples”, Energy Conversion and Management, vol. 46, no. 15-16, pp. 2405-2418, 2005.
[12] Sencan, A.; Kemal, A.; Yakuta, B.; Soteris, A.; Kalogiroub, H.; “Thermodynamic analysis of absorption systems using artificial neural network”, Renewable Energy, vol. 31, no. 1, pp. 29-43, 2006.
[13] Sencan, A.; “Artificial intelligent methods for thermodynamic evaluation of ammonia–water refrigeration systems”, Energy Conversion and Management, vol. 47, no. 18-19, pp. 3319-3332, 2006.
[14] Kaita, Y.; “Thermodynamic properties of lithium bromide-water solution at high temperatures”, International Journal of refrigeration, vol. 24, no. 5, pp. 374-390, 2001.
[15] Sozen, A.; Arcaklioglu, E.; oozalp, M.; “Formulation based on artificial neural network of thermodynamic properties of ozone friendly refrigerant/absorbent couples”, Applied Thermal Engineering, vol. 25, no. 11-12, pp. 1808-1820, 2005.
[16] Florides, G.A.; Kalogirou, S.A.; Tassou, S.A.; Wrobel, L.C.; “Design and construction of a LiBr–water absorption machine”, Energy Conversion and Management, vol. 44, no. 15, pp. 2483-2508, 2003.
[17] Hagan, M.T.; Menhaj, M.; “Training feedforward networks with the marquardt algorithm”, IEEE Transactions on Neural Network, vol. 5, no. 6, pp. 989-993, 1994.
[18] Haykin, S.; Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.