شبیه‌سازی عددی جریان تقارن محوری مافوق صوت لزج حول مخروط سرپخ با استفاده از روش تفاضل مرکزی ضمنی، با دقت مرتبه چهارم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول و دانشیار، دانشگاه بوعلی سینا، دانشکدة مهندسی، گروه مهندسی مکانیک،

2 کارشناس ارشد، دانشگاه بوعلی سینا، دانشکدة مهندسی، گروه مهندسی مکانیک،

چکیده

در این مقاله با استفاده از روش تفاضل مرکزی با دقت مرتبه چهارم و معادلات ناویر-استوکس لایه-نازک (TLNS)، جریان تقارن‌محوری،‌ دائم و لزج در رژیم مافوق­‌صوت به­صورت برازش شوک حول مخروط سرپخ شبیه‌سازی شده‌است. به­علت استفاده از عبارت­های مرتبه بالای بسط سری تیلور در انفصال عددی مشتقات، این روش نسبت به روش­­های مرتبه پایین دارای دقت بیشتر و نیز خطاهای عددی (خطای پراکندگی) کمتر است. چگونگی انفصال عددی مشتقات در روی مرزها و نقاط مجاور آن در پایداری این روش نقش بسزایی دارد. با استفاده از این روش در یک شبکه نسبتاً درشت، می­توان نتایجی بسیار نزدیک به نتایج شبکه ریزِ روش "بیم-وارمینگ" که دارای دقت مرتبه دوم است، به­دست آورد. با ریز شدن شبکه در این روش، دقت بالای آن نسبت به روش "بیم-وارمینگ" محسوس­تر خواهد شد. این روش قابلیت همگرایی تا دقت ماشین را نیز دارد.  

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of Axisymmetric Supersonic Viscous Flow Over Blunt Cone by Using Implicit Fourth Order Finite Difference Method

نویسندگان [English]

  • mohammad mahdi rashidi 1
  • Majid Moradi Bastani 2
چکیده [English]

In this paper, by using implicit fourth order central difference method and TLNS equations, the numerical solution of the steady axisymmetric viscous supersonic flow is implemented over blunt cone with shock-fitting method. Because of using high order terms of Taylor series in discretization of derivatives, this method has high accuracy and low numerical error (dispersion error) compared with low order method. The boundary-closure scheme has an important role in stability of this method. By using a coarse grid in this method, the results of numerical solution are found to be very close to those obtained with a fine grid employing the second order (Beam-Warming) method. Higher accuracy of this method is identified relative to the second order method when the grid is being refined. The convergence of this method can be adjusted to accommodate the computational hardware capabilities. 

کلیدواژه‌ها [English]

  • TLNS equations
  • Fourth order method
  • Supersonic viscous flow
  • Shock-fitting
[1] Mahesh, K.; “A Family of High Order Finite Difference Schemes with Good Spectral Resolution”,Journal of Computational Physics, Vol. 145, p.p. 332-358, 1998.
[2] Peyret, R.; “Introduction to High-Order Approximation Methods for Computational Fluid Dynamics”, Advanced turbulent flow computations,CISM Courses and Lectures, p.p. 1–79, 2000.
[3] Zhong, X.; “High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition”, Journal of Computational Physics,Vol. 144, pp. 662–709, 1998.
[4] Costa, B.; Don, W. S.; “High Order Hybrid Central WENO Finite Difference Scheme for Conservation Laws”, Journal of Computational and Applied Mathematics, Vol. 204, p.p. 209–218, 2007.
[5] Anderson, D.A.; Tanehill, J.C.; pletcher, R.H.; “Computational Fluid Mechanics and Heat Transfer”,McGraw Hill Book Company, New York, 1984.
[6] Beam, R.M.; Warming, R.F.; “An Implicit Factored Schemes for the Compressible Navier-Stokes Equation”, AIAA Journal, Vol. 16, No. 4, p.p. 393- 402, 1978.
[7] Esfahanian, V.; “ Computation and Stability Analysis of Laminar Flow over a Blunted Cone in Hypersonic Flow”, Ph.D. Thesis, The Ohio University,Columbus, 1991.
[8] Hejranfar, K.; Esfahanian V.; Najafi M.; “On the Outflow Conditions for Spectral Solution of the Siscous Blunt-Body Problem”, Journal of Computational Physics, Vol. 228, p.p. 3936–3972,2009.
[9] Kutler, P.; Chakravarthy, S.R.; Lombard, C.P.; “Supersonic Flow Over Ablated Nosetip Using an Unsteady Implicit Numerical Procedure”, AIAA Journal, p.p. 178-213, 1978.
[10] Viviand, H.; Ghazzi, W.; “Numerical Solution of the Navier-Stokes Equations at High Reynolds Numbers with Application to the Blunt Body Problem” In Lecture Notes in Physics, No. 59, Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, p.p. 375-401, 1976.
[11] Beckwith, I.E.; Gallagher, J.J.; “Heat Transfer and Recovery Temperatures on a Sphere with Laminar Transitional and Turbulent Boundary Layers at Mach Numbers of 2 and 4.15”, NACA TN 4125, 1957.