[1] K. Eom, H.S. Park, D.S. Yoon, T. Kwon, Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles, Physics Reports, 503(4) (2011) 115-163.
[2] W.C. Chuang, H.L. Lee, P.Z. Chang, Y.C. Hu, Review on the modeling of electrostatic MEMS, Sensors, 10 (2010) 6149-6171.
[3] A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications, Sensors and Actuators B: Chemical, 130(2) (2008) 917-942.
[4] O.Y. Loh, H.D. Espinosa, Nanoelectromechanical contact switches, Nature Nanotechnology, 7 (2012) 283.
[5] M.I. Younis, E.M. Abdel-Rahman, A. Nayfeh, A reduced-order model for electrically actuated microbeam-based MEMS, Journal of Microelectromechanical Systems, 12(5) (2003) 672- 680.
[6] W.C. Chuang, Y.C. Hu, C.Y. Lee, W.P. Shih, P.Z. Chang, Electromechanical behavior of the curled cantilever beam, Journal of Micro/Nanolithography, MEMS MOEMS, 8 (2009) 033020-033028.
[7] F.G. Golzar, R. Shabani, H. Hatami, G. Rezazadeh, Dynamic Response of an Electrostatically Actuated Micro-Beam in an Incompressible Viscous Fluid Cavity, Journal of Microelectromechanical Systems, 23(3) (2014) 555-562.
[8] J.W.M. Chon, P. Mulvaney, J.E. Sader, Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids, Journal of Applied Physics, 87(8) (2000) 3978-3988.
[9] N. Guan, T. Luan, Z.e.a. Liu, Vortex distribution and mixed convection of liquid flow across micro- cylinders in a rectangular channel, Heat Mass Transfer, 52 (3) (2016) 657-670
[10] A. Tamayol, J. Yeom, M. Akbari, M. Bahrami, Low Reynolds number flows across ordered arrays of micro-cylinders embedded in a rectangular micro/ minichannel, International Journal of Heat and Mass Transfer, 58(1) (2013) 420-426.
[11] F. Alfieri, M.K. Tiwari, A. Renfer, T. Brunschwiler, B. Michel, D. Poulikakos, Computational modeling of vortex shedding in water cooling of 3D integrated electronics, International Journal of Heat and Fluid Flow, 44 (2013) 745-755.
[12] J. Pierce, Experimental study of micro-vortex generators, The University of Texas, 2010.
[13] X. Shang, X. Huang, C. Yang, Vortex generation and control in a microfluidic chamber with actuations, Physics of Fluids, 28(12) (2016) 122001.
[14] X. Wang, J. Zhou, I. Papautsky, Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity, Biomicrofluidics, 7(4) (2013) 044119.
[15] M. Rezaee, N. Sharafkhani, Electrostatically frequency tunable micro-beam-based piezoelectric fluid flow energy harvester, Smart Materials and Structures, 26(7) (2017) 075008.
[16] S. Kaneko, I. Nakamura, T.F.M. Kato, K. Ishihara, T. Nishihara, N.W. Mureithi, M.A. Langthjem, Fluid- Induced Vibrations, Classifications and lessons from practical experiences, Elsevier, 2014.
[17] C.H.K. Williamson, Vortex Dynamics in the Cylinder Wake, Annual Review of Fluid Mechanics, 28(1) (1996) 477-539.
[18] M.L. Facchinetti, E. de Langre, F. Biolley, Coupling of structure and wake oscillators in vortex-induced vibrations, Journal of Fluids and Structures, 19(2) (2004) 123-140.
[19] M.P. Païdoussis, S.J. Price, E. de Langre, Fluid Structure Interactions: Cross-Flow-Induced Instabilities, Cambridge University Press, New York., 2011.
[20] R.D. Blevins, Flow-induced Vibration, Van Nostrand Reinhold, Florida., 2001.
[21] C. Ke, H.D. Espinosa, N. Pugno, Numerical Analysis of Nanotube Based NEMS Devices — Part II: Role of Finite Kinematics, Stretching and Charge Concentrations, Journal of Applied Mechanics, 72(5) (2005) 726-731.
[22] L. Meirovitch, Analytical methods in vibration, Macmillan, New York., 1967.
[23] J. Lienhard, Synopsis of lift, drag and vortex frequency data for rigid circular cylinder, Washington State University, 1966.