[1] H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, Journal of Applied Physiology, 1(2) (1948) 93-122.
[2] K. Mitra, S. Kumar, A. Vedevarz, M. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat, Journal of Heat Transfer, 117(3) (1995) 568-573.
[3] W.-Q. Lu, J. Liu, Y. Zeng, Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method, Engineering Analysis with Boundary Elements, 22(3) (1998) 167-174.
[4] C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Compte Rendus, 247(4) (1958) 431-433.
[5] D. Tzou, P. Puri, Macro-to Microscale Heat Transfer: The Lagging Behavior, Applied Mechanics Reviews, 50 (1997) B82-B82.
[6] Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, International Journal of Heat and Mass Transfer, 52(21) (2009) 4829-4834.
[7] K.-C. Liu, Y.-N. Wang, Y.-S. Chen, Investigation on the bio-heat transfer with the dual-phase-lag effect, International Journal of Thermal Sciences, 58 (2012) 29-35.
[8] N. Afrin, J. Zhou, Y. Zhang, D. Tzou, J. Chen, Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model, Numerical Heat Transfer, Part A: Applications, 61(7) (2012) 483-501.
[9] H. Hensel Thermoreception and temperature regulation, Monographs of the Physiological Society, 38 (1980), 1-321.
[10] J. Ring, R. Dear, Temperature transients: a model for heat diffusion through the skin, thermoreceptor response and thermal sensation, Indoor Air, 1(4) (1991) 448- 456.
[11] E. Arens, H. Zhang, C. Huizenga, Partial-and whole- body thermal sensation and comfort—Part I: Uniform environmental conditions, Journal of Thermal Biology, 31(1) (2006) 53-59.
[12] Y.-g. Lv, J. Liu, Interpretation on thermal comfort mechanisms of human bodies by combining Hodgkin- Huxley neuron model and Pennes bioheat equation, Forschung im Ingenieurwesen, 69 (2) (2004) 101-114.
[13] Y. G. Lv, J. Liu, Effect of transient temperature on thermoreceptor response and thermal sensation, Building and Environment, 42(2) (2007) 656-664.
[14] A. Zolfaghari, M. Maerefat, Thermal response of cutaneous thermoreceptors: A new criterion for the human body thermal sensation, Proceedings of the 17th Iranian Conference of Biomedical Engineering, Isfahan, Iran, IEEE, (2010) 1-4.
[15]A. Zolfaghari, M. Maerefat, A new simplified thermoregulatory bioheat model for evaluating thermal Building and Environment, 45(10) (2010) 2068-2076.
[16] A.P. Gagge, An effective temperature scale based on a simple model of human physiological regulatory response, ASHRAE Transactions, 77 (1971) 247-262.
[17] A. Zolfaghari, M. Maerefat, A new predictive index for evaluating both thermal sensation and thermal response of the human body, Building and Environment, 46(4) (2011) 855-862.
[18] H. Bijari, A. Zolfaghari, Developing the thermal comfort model based on cutaneous thermoreceptors response using non-Fourier heat transfer, Modares Mechanical Engineering, 17(11) (2018) 70-76. (in Persian)
[19] J. Liu, Z. Ren, C. Wang, Thermal wave theory about temperature oscillations effect in living tissues, Chinese Journal of Physics, 12(4) (1995) 215-218.
[20] F. Xu, K. Seffen, T. Lu, Non-Fourier analysis of skin biothermomechanics, International Journal of Heat and Mass Transfer, 51(9) (2008) 2237-2259.
[21] J. Ring, R. de Dear, A. Melikov, Human thermal sensation: frequency response to sinusoidal stimuli at the surface of the skin, Energy and Buildings, 20(2) (1993) 159-165.
[22] ASHRAE. ASHRAE handbook of fundamentals. Atlanta: ASHRAE; (2001).
[23] K. Cena, R. de Dear, Thermal comfort and behavioural strategies in office buildings located in a hot-arid climate, Journal of Thermal Biology, 26(4) (2001) 409-414.
[24] J. Han, G. Zhang, Q. Zhang, J. Zhang, J. Liu, L. Tian, C. Zheng, J. Hao, J. Lin, Y. Liu, Field study on occupants' thermal comfort and residential thermal environment in a hot-humid climate of China, Building and Environment, 42(12) (2007) 4043-4050.
[25] W. A. Andreasi, R. Lamberts, C. Cândido, Thermal acceptability assessment in buildings located in hot and humid regions in Brazil, Building and Environment, 45(5) (2010) 1225-1232.
[26] G. Zhang, C. Zheng, W. Yang, Q. Zhang, D. J. Moschandreas, Thermal comfort investigation of naturally ventilated classrooms in a subtropical region, Indoor and Built Environment, 16(2) (2007) 148-158.
[27] A. Simone, J. Kolarik, T. Iwamatsu, H. Asada, M. Dovjak, L. Schellen, M. Shukuya, B. W. Olesen, A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation, Energy and Buildings, 43(1) (2011) 1-9.
[28] E. Arens, H. Zhang, C. Huizenga, T. Han, Thermal sensation and comfort models for non-uniform and transient environments, part I: Uniform environmental conditions, Journal of thermal biology, 31(1-2) (2006) 53-59.
[29] T. Goto, J. Toftum, R. de Dear, P. O. Fanger, Thermal sensation and thermophysiological responses to metabolic step-changes, International Journal of Biometeorology, 50 (5) (2006) 323-332.
[30] K. C. Parsons, The effects of gender, acclimation state, the opportunity to adjust clothing and physical disability on requirements for thermal comfort, Energy and Buildings, 34(6) (2002) 593-599.