[1] K.S. Elvira, X.C. i Solvas, R.C.R. Wootton, A.J. deMello, The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem., 5(11) (2013) 905-915.
[2] L. Martin, M. Meier, S.M. Lyons, R.V. Sit, W.F. Marzluff, S.R. Quake, H.Y. Chang, Systematic reconstruction of RNA functional motifs with high-throughput microfluidics, Nat. Methods, 9(12) (2012) 1192-1194.
[3] C. Lorthongpanich, L.F. Cheow, S. Balu, S.R. Quake, B.B. Knowles, W.F. Burkholder, D. Solter, D.M. Messerschmidt, Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos, Science 341 (2013) 1110-1112.
[4] M. Sadeghi, A. Sadeghi, M.H. Saidi, Electroosmotic Flow in Hydrophobic Microchannels of General Cross Section, Journal of Fluids Engineering, Transactions of the ASME, 138(3) (2016) 031104.
[5] W. Ehrfeld, V. Hessel, H. Löwe, Microreactors: New Technology for Modern Chemistry, Wiley, Weinheim, 2000.
[6] S. Jomeh, M. Hoorfar, Numerical modeling of mass transport in microfluidic biomolecule-capturing devices equipped with reactive surfaces, Chem. Eng. J., 165(2) (2010) 668-677.
[7] G. Taylor, Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proc. R. Soc. London, Ser. A, 219(1137) (1953) 186-203.
[8] R. Aris, On the Dispersion of a Solute in a Fluid Flowing through a Tube, Proc. R. Soc. London, Ser. A, 235 (1956) 67-77.
[9] M. Pagitsas, A. Nadim, H. Brenner, Projection operator analysis of macrotransport processes, J. Chem. Phys., 84 (1986) 2801-2807.
[10] G.N. Mercer, A.J. Roberts, A Centre Manifold Description of Contaminant Dispersion in Channels with Varying Flow Properties, SIAM J. Appl. Math., 50 (1990) 1547-1565.
[11] R. Sankarasubramanian, W.N. Gill, Unsteady Convective Diffusion with Interphase Mass Transfer, Proc. R. Soc. London, Ser. A, 333 (1973) 115-132.
[12] R.W. Glaser, Antigen-antibody binding and mass transport by convection and diffusion to a surface: A two- dimensional computer model of binding and dissociation kinetics, Anal. Biochem., 213(1) (1993) 152-161.
[13] D. Dutta, Solutal transport in rectangular nanochannels under pressure-driven flow conditions, Microfluid Nanofluid, 10(3) (2011) 691-696.
[14] R. Hansen, H. Bruus, T.H. Callisen, O. Hassager, Transient convection, diffusion, and adsorption in surface-based biosensors, Langmuir, 28(19) (2012) 7557-7563.
[15] T. Gervais, K.F. Jensen, Mass transport and surface reactions in microfluidic systems, Chem. Eng. Sci., 61(4) (2006) 1102-1121.
[16] B. Roy, T. Das, T.K. Maiti, S. Chakraborty, Effect of fluidic transport on the reaction kinetics in lectin microarrays, Anal. Chim. Acta, 701(1) (2011) 6-14.
[17] H. Parsa, C.D. Chin, P. Mongkolwisetwara, B.W. Lee, J.J. Wang, S.K. Sia, Effect of volume- and time- based constraints on capture of analytes in microfluidic heterogeneous immunoassays, Lab Chip, 8(12) (2008) 2062-2070.
[18] D. Mocanu, A. Kolesnychenko, S. Aarts, A. Troost- Dejong, A. Pierik, E. Vossenaar, H. Stapert, Mass transfer effects on DNA hybridization in a flow-through microarray, J. Biotechnol., 139(2) (2009) 179-185.
[19] H. Helisaz, M.H. Saidi, A. Sadeghi, Reduction of production rate in Y-shaped microreactors in the presence of viscoelasticity, Anal. Chim. Acta, 990 (2017) 121-134.
[20] A. Sadeghi, Y. Kazemi, M.H. Saidi, Joule heating effects in electrokinetically driven flow through rectangular microchannels: An analytical approach, Nanoscale Microscale Thermophys. Eng., 17(3) (2013) 173-193.
[21] J.H. Masliyah, S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena, First ed., Wiley, New Jersey, 2006.
[22] A. Sadeghi, M.H. Saidi, Z. Waezi, S. Chakraborty, Variational formulation on Joule heating in combined electroosmotic and pressure driven microflows, Int. J. Heat Mass Transfer, 61(1) (2013) 254-265.
[23] C. Yang, D. Li, J.H. Masliyah, Modeling forced liquid convection in rectangular microchannels with electrokinetic effects, Int. J. Heat Mass Transfer, 41(24) (1998) 4229-4249.
[24] S.G. Kandlikar, S. Garimella, D. Li, S. Colin, M.R. King, Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier, Oxford, 2006.
[25] A. Anderson, J.C. Tannehill, R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemisphere, Washington, 1984.
[26] P.J. Oliveira, F.T. Pinho, Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids, J. Fluid Mech., 387 (1999) 271-280.
[27] G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows, Fundamentals and Simulation, Springer, New York, 2005.
[28] A. Ahmadian-Yazdi, A. Sadeghi, M.H. Saidi, Electrokinetic mixing at high zeta potentials: Ionic size effects on cross stream diffusion, J. Colloid Interface Sci., 442 (2015) 8–14.
[29] A.E. Hoetink, T.J.C. Faes, K.R. Visser, R.M. Heethaar, On the flow dependency of the electrical conductivity of blood, IEEE Trans. Biomed. Eng., 51(7) (2004) 1251-1261.
[30] L. Campo-Deano, R.P.A. Dullens, D.G.A.L. Aarts, F.T. Pinho, M.S.N. Oliveira, Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system, Biomicrofluidics, 7 (2013) 034102.